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ABSTRACT

A set of high speed rotating whirl experiments were
performed in the vacuum of the MIT Blowdown Compressor Facility
on the MIT Aeroelastic Rotor, which is structurally typical of a
modern high bypass ratio turbofan stage. These tests identified
the natural frequencies of whirl of the rotor system by forcing
its response using an electromagnetic shaker whirl excitation
system. The excitation was slowly swept in frequency at constant
amplitude for several constant rotor speeds in both a forward
and backward whirl direction.

The natural frequencies of whirl determined by these
experiments were compared to those predicted by an analytical
6 DOF model of a flexible blade-rigid disk-flexible shaft rotor.
The model is also presented in terms of nondimensional
parameters in order to assess the importance of the interaction
between the bladed disk dynamics and the shaft-disk dynamics.
The correlation between the experimental and predicted natural
frequencies is reasonable, given the uncertainty involved in
determining the stiffness parameters of the system.
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1. Introduction

Current trends in the design of aircraft gas turbines have
resulted in lighter, more structurally efficient engines with
higher spool speeds and higher bypass ratio fans. In particular,
fans are often unshrouded and are of high aspect ratio, thereby
increasing the flexibility of the fan blading. This increase in
blade flexibility tends to depress the blade natural frequencies
towards those of the shaft-disk system. As the natural frequency
of the blade, in its first bending mode for example, approaches
the natural frequency of the shaft disk system, the inferaction
between the blade modes and the shaft-disk modes increases.
Neglecting these interaction effects could in some cases lead to
inaccurate estimates of rotor critical speeds and system natural
frequencies at speed. Unexpected resonances within the engine's
operating envelope may result, with all the reliability and
performance penalties inherent in operating at such points. This
report describes a set of experiments carried out in order to
evaluate the influence of shaft flexibility on the dynamics of
of bladed-disk systems.

The whirling motion of a rotating bladed disk-shaft system
has been investigated by several authors. Early efforts by
Coleman and Feingold {1] to investigate the phenomenon known as
helicopter ground resonance identified the cause of the
instability to be whirling of the rotor. Later analytical efforts
by Crandall and Dugundji {2] studied the whirling of propellors
powered by piston engines. The finite element approach taken by
Palladino and Rossettos [3] as well as Loewy and Khader [4]
provides numerical estimates of the natural frequencies of a
bladed disk-shaft system. In this investigation, the analytical
model derived by Mokadam {5] will be modified to predict the
natural frequencies of whirl for a rotor typical of a

cantilevered turbofan stage. The results of a set of experimental
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whirl testing will be compared with predictions of the model.

A simplified rotor model involving a flexible shaft, rigid
disk; and flexible blading [5] was employed to predict the
dynamic behaviour of the MIT Aeroelastic (AE) rotor as installed
in the MIT Blowdown Compressor Facility [6]. The system vibration
modes predicted by the model included motion of the disk centroid
in the direction of rotation (forward whirl) and opposite to the
direction of rotation (backward whirl) as viewed from the rotor
frame of reference. The degree of interaction between the bladed
disk and shaft-disk dynamics can be quantified by a set of
nondimensional interaction criteria. The magnitude of these
interaction criteria determines if sufficiently accurate results
can be obtained with uncoupled analyses of the blade-disk and
shaft-disk dynamics. Otherwise a coupled analysis or a finite
element approach may be indicated.

An experimental program to determine the naturai
frequencies of the MIT AE rotor was undertaken in order to
validate the predictions obtained from the model. A series of
forced response tests were conducted by setting up a particular
whirl excitation pattern, either forward or backward, and
sweeping through a range of forcing frequencies at constant rotor
speed. The response of the system was monitored with an array of
on-rotor and nonrotating instrumentation. By sweeping the forcing
frequency and monitoring the system response for amplitude peaks,
the system natural frequencies were found. Therefore the system
natural frequencies predicted by the model could be compared to
those experimentally determined.

The series of experiments described in this report were
the high speed tests in an ongoing rotor whirl testing program.
Previous work [5] involved the development of the flexible
shaft-rigid disk-flexible blade model and the construction of a
low speed vacuum whirl spin rig. Tests were conducted in the low

speed spin rig in 5 Hz (300 rpm) increments of rotor speed up to




30. Hz (1800 rpm). The high speed experiments were conducted in
the vacuum of the MIT Blowdown Compressor facility test section
in 36 Hz (1800 rpm) increments of rotor speed up to 150 Hz (9000
rpm). At higher rotor speeds the effects of rotation had a more
pronounced effect on the system natural frequencies and on the
interaction of the modes.

Chapter 2 provides an overview of the 6 degree of freedom
(DOF) coupled rotor model developed in [5] and presents the
necessary first order corrections to the shaft disk dynamics to
account for a system center of mass offset from the disk
geometric center. The nondimensional interaction criteria are
also explored and comparison are made with the classical
cantilevered bladeless rotor analysis of Den Hartog [7] and with
recent work on bladed disk dynamics by Crawley and Mokadam [8].
The experimental facilities, instrumentation, whirl excitation
system are described in Chapter 3. Chapter 4 describes the
series of nonrotating modal surveys performed on the MIT AE rotor
as installed in the MIT Compressor Blowdown Facility in order to
characterize the stiffness parameters of the system. From the
experimental determination of the system stiffness parameters,
the natural frequencies of the rotating blade-disk-shaft system
are predicted. The rotating forced whirl response tests are
discussed in Chapter 5 and reasonable agreement between the
predicted and experimentally determined natural frequencies is

found.



2. Analysis of a Rotating Shaft - Bladed Disk System

In order to predict the dynamic behaviour of a shroudless
fan with flexible blades affixed to a rigid disk and supported by
a flexible shaft, an appropriate analytic model has been
developed. Since they are attached to a rigid disk and not
connected through midspan or tip shrouds, the N fan blades are
assumed to be elastically uncoupled. The blades are also assumed
to be structurally identical, or well tuned. The shaft upon which
the disk is suppported has sufficient flexibility to allow for
translation of the disk centroid in the plane of rotation and
pitching of the disk out of the plane of rotation. The main
objective of the development of the coupled blade-disk-shaft
dynamic model is to determine the criteria for interaction
between the blade motion and the rigid body motion of the disk
supported on the flexible shaft. If the coupling interactions
are strong, then the solution of the fully coupled system is
warranted in order to obtain accurate estimates of the system
natural frequencies. Otherwise, if the interactions are weak,
then the bladed disk dynamic problem may be solved independent of
the shaft-disk dynamic problem.

The generalized degrees of freedom of the model express
blade and shaft deflection with reference to a rotor-fixed
coordinate system. The equations will first be derived in a
coordinate system centered at the geometric centroid the disk.

In the absence of a massive shaft, this point would also be the
system center of mass. The approximate effect of the presence of
a massive shaft, which shifts the system center of mass of the
system away from the centroid of the disk, will be explored.

Subsequently the equations will be expressed in a
nondimensional form. In this way the the relevant nondimensional
parameters governing the coupled blade-disk-shaft vibration of a

shroudless fan can be identified. These parameters will be
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compared to those obtained by Den Hartog [7] in his classical
analysis of the asynchronous whirl of a cantilevered bladeless
disk. The similarities between the two analyses will be
identified and the necessary extensions to include blade
flexibility will be pointed out. The nondimensionalization
procedure will facilitate the assessment of the importance of the
interactions between the bladed disk vibration and the whirling

shaft motion in rotating turbomachinery.

2.1) Equations of Motion

The homogeneous equations of motion of a system of N
flexible blades cantilevered from the hub of a rigid disk
supported by a rotating flexible shaft will be presented. The
blades are modelled with a single Ritz bending mode and are
attached to the disk with an effective structural stagger angle g
between the normal to the disk plane and the blade chord line, as
shown in fig. 2.1. In general the disk may be located at any
axial position along a shaft of arbitrary boundary conditions.
The shaft stiffness, which is represented by equivalent springs,
may include both translational and pitch displacement
stiffnesses, as well as a stiffness coupling between disk
pitching and translation.

The equations of motion for the blade-disk-shaft system
were derived by Mokadam [5] using a Lagrangian formulation. This
model of the whirling shaft-bladed disk system included the
following degrees of freedom, expressed in the rotating
coordinate system, as shown fig. 2.1:

- two orthogonal disk translation modes in

the plane of rotation (qugp and qu),

- two out of plane disk pitch modes about

mutually orthogonal diametral lines
(qu and an),

- one Ritz beam first bending mode for each of
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the N blades (qj, i=0,...,N-1).

The use of coordinates expressed in the rotating frame of
reference is helpful from the point of view of the experimental
investigator, since displacement and acceleration signals
measured on the rotating bladed disk are referred to this
coordinate frame. Comparisons between the experimental results
and the behaviour predicted by the analytical model are therefore
more readily made if the behaviour is described in the rotating
reference frame.

The relevant coupling of the blade modes to the shaft
translation and pitching becomes apparent when the dispiacement
for each individual blade is expressed as the sum of sine and
cosine nodal diametervpatterns:

N -1

q. = z

{ ~a sinng, + bcosng. ] , (2.1.1)
n n i n i

0

where ¢; is the angular position of the ith blade on the

disk:

Only the one nodal diameter sine and cosine blade modes couple
with the translation and pitching of the disk on its shaft. The
umbrella or zero nodal diameter cosine blade mode completely
decouples from the other blade modes and would couple with the
disk axial translation and in-plane rotational degrees of freedom
of the disk. However the present model does not include disk
axial motion or rotational vibration motions. Therefore the zero
nodal diameter blade mode for this simpliflied model is governed
by eq. (2.1.2).

2 2

mb +[K +(m -mcosa )2 Jb =0- (2.1.2)
0 0 B Q ] 0

For a discussion of the dynamics of this mode, see {8].
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The higher blade modes, which have more than one nodal
diameter, also completely decouple from the disk motion. These
are the so called reactionless modes which exert no net inertial
reaction on the disk due to their motion. The equations of

motion for these so called reactionless modes are given by:

" 2 2
ma + [K + (m -mcosag ) Ja =0 (2.1.3)
o n B Q 0 n

{(n>1)
" 2 2 .
mb + [ K +(m ~-mcosag ) lb =0 (2.1.4)
° n B Q 0 n

The homogeneous coupled whirl equations of motion, which
include the blade one nodal diameter motion, are shown in matrix
form in eq. (2.1.5). The blade one nodal diameter modes couple
to the disk translation motion inertially, gyroscopically and
centrifugally. The n=1 blade modes couple to the disk pitch
motion inertially and centrifugally. These coupled whifl
equations were derived assuming that the center of the axis
system located at the centroid of the disk coincided with the
system center of mass, as shown in fig. 2.2a.

In equations (2.1.2) to (2.1.5), the following definitions

hold:
M= [ dm
v
2 2 2 2
I = f [ x + z ]dm = f [ y+ z ]dm
P \ v
2 I‘T 2 rT
m = r [ “[y(r)] dm , m =1xr [ y(r)rdm
o T 1 T
r r
H
r , T r 2
T
m = r f Ty(r)dm ,m = r f "rf 3Y dr dm
2 r Q T r r or
H H H

The quantity me is the blade modal mass, mi is the blade

consistent mass coupling to disk pitch, mz2 is the blade
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consistent mass coupling to disk translation, and mg is the
blade mass foreshortening term.

Often the system center of mass is not located at the
centroid of the disk, which was chosen in the above analysis as
the coordinate system origin. This is in fact the case for the
MIT AE rotor. Instrumentation considerations made it desirable to
refer the motion to a coordinate system center at the geometric
centroid of the disk. Because the mass of the shaft was not
negligible, the center of mass of the rotor system was offset
from the centroid of the disk. Under these circumstances the
translational and pitch motion the disk are inertiélly coupled,
even in the absence of blade dynamics or shaft elastic coﬁpling.
This effect must be included in the equations of motion. An

appropriate axial mass imbalance S is defined as:

S = f zdm ' (2.1.6)
v

The mass imbalance was introduced in the coupled whirl equations
of motion by correcting the upper left corner 4x4 disk motion
submatrices of eqg. (2.1.5) [4]. The corrected submatrix equation
exactly represents the whirling motion of a disk with rigid
blades. For small offsets of the center of mass from the disk
centriod, the effect of the resulting imbalance on the blade
dynamics and its coupling to the disk motion is of higher order,
and will not be included in the current model. For an exact
representation of these imbalance effects on the blade motion see
[8]. The matrix equations of motion for the mass imbalance
corrected system are shown in eq. (2.1.7). The dynamics of the
blade modes which are uncoupled from the disk motion, eq. (2.1.2)
to (2.1.4), remain unchanged.

The set of equations (2.1.7) show the characteristic
behavior of the coupled shaft-bladed disk system expressed in
the rotor frame of reference. Disk rigid body translation

displacements gyg and qyr couple inertially to both the disk
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rigid body pitch motion, through the center of mass offset term
S, and the blade one nodal diameter blade deflections, through
the N/2 m cosa terms. The inertial coupling effects are always
symmetric in the equations of motion. The two translational
degrees of freedom also couple gyroscopically: to each other
(through the rotor mass 2QM), to the disk pitching motion
(through 2QS), and to the blade one nodal diameter displacement
(through QNmzcosa ). The gyroscopic coupling terms are
antisymmetric, or skew-symmetric, in the equations of motion. The
disk rigid body translation terms in the stiffness matrix show
the centrifugal destiffening of the translational stiffness terms
Kyr and KyR- Depending on the sign of the center of mass
offset S, the translation-pitch coupling stiffnesses Ky, g and
Kng are either alternately destiffened or stiffened by the
centrifugal effects. The disk translation motion is also
destiffened by centrifugal coupling to the blade one nodal
diameter motion.

The disk out-of-plane pitching displacements drR and
qnR can be seen from eq. (2.1.7) to inertially couple with the
disk translation motion (through S) and to the blade one nodal
diameter displacement through N/2*mi sing. The disk pitching
degrees of freedom are not mutually coupled in the gyroscopic
sense, as were the two disk translational degrees of freedom.
This is due to the fact that the equations of motion are
expressed in the rotor frame and not in a nonrotating coordinate
system. If the equations were expressed in the nonrotating frame,
the converse would be true, that is the two disk pitch degrees of
freedom would gyroscopically couple with each other and the disk
translation motion would be mutually uncoupled. The disk pitching
stiffness terms KgR and KnR are centrifugally stiffened by
Qzlp. Depending on the sign of S, the disk translatiod—pitch
coupling stiffnesses Kan and KYER are alternately

centrifugally destiffened or stiffened. The blade one nodal
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diameter displacement modes couple to centrifugally destiffen the
disk.pitch motion through the terms Q°N/2em sing.

Centrifugal blade stiffening terms are also seen on the
diagonal of the stiffness matrix in rows 5 and 6. The Southwell
coefficient ¢, which represents the degree of stiffening, relates
the blade natural frequencies in the absense or presence of mean

rotation @

w = w +Q (2.1.8)

Comparing equations (2.1.7) and (2.1.8), the Southwell

coefficient is:

g = 2 - cos’ a (2.1.9)

The first term in eq. (2.1.9) represents the stiffening due to
blade foreshortening and the second term the destiffening due to

in-plane motion.

2.2) Nondimensional Equations of Motion and Interaction Criteria
The coupled set of equations (2.1.7) describe the
homogeneous behavior of the bladed disk - shaft rotating system.
It is instructive to express the equations nondimensionally, and
to identify the relevant nondimensional parameters. The relative

importance of each structural dynamic quantity, such as shaft
stiffness or blade inertial coupling to disk translation, can be
determined by evaluating the magnitude of the corresponding
nondimensional terms. Therefore a nondimensional equation set
would be more useful for evaluating the criteria for interaction
between the dynamics of blade vibration and shaft whirl.
Observations comparing this normalization scheme and Den Hartog's
[7] classical approach for a whirling cantilevered rotor with no

blades will also be made.




22

In formulating the nondimensionalization scheme four
lethh scales appear. Two length scales naturally arise from the
mass parameters: the axial offset of the system center of mass
from the centroid of the disk (c) and the radius of gyration for
pitching of the disk (d). The translational degrees of freedom
qur and dyR will be normalized by d. The length scales that
arise from consideration of the blade geometry are the blade tip
radius rp and hub radius ry. Of the four length scales, one
is chosen as the fundamental length and the others are expressed
as ratios which are normalized by this length. Because the
translational degrees of freedom were normalized by the disk
pitching radius of gyration, d is chosen as the fundamental

length and the other length scales are expressed as:

r
H

d

c n
3 T
The natural frequency of the nonrotating tuned blades up
was chosen as the reference time quantity. This is the blade
frequency that would be measured if the blade was cantilevered
from a perfectly rigid foundation. This choice of a reference
time scale was arbitrary but convenient for the current problem

of assessing the impact of the flexibility and whirling of the

shaft on the blade dynamics. The time variable t normalized by

wp is T:
T = wBt (2.2.1)
where:
2 K
w. = B (2.2.2)
B 5

0

Therefore differentiation with respect to time (°) becomes

differentiation with respect to ug ( )':
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o

]
-

]

w, 9 = w_ () (2.2.3)

Several nondimensional mass parameters arise in the
normalization scheme. The comparison of diagonal and off-diagonal
inertia terms in the equations of motion yields mass coupling
ratios y expressing the relative magnitude of fhe inertial
erms. A ratic cf mass matrix diagonal entries 5, which
expresses the relative mass of the blades and the disk, also
appears. As defined below, the mass coupling parameter for
interaction between disk translational motion and blade one nodal
diameter vibration is ppg (i.e. y Translation Blade) [9].

Note the dependence of upg on the square of the cosine of the
effective stagger angle angle a. The inertial coupling between
disk pitching and blade one nodal diameter vibration is uppg
(i.e. p Pitch Blade). This term depends on the square of the
sine of the stagger angle. The ratio of mass matrix diagonal
elements that arises naturally from this normalization scheme is
the ratio of the blade modal mass to the disk pitch moment of
inertia, p. These nondimensional inertia terms are defined

below:

N 2 N .2

2 m, cos a 2 m, sin'a

Hrg = ’ “pB :
m, M m, I
P

m,
p =T

P

The disk translation-pitch inertial coupling term uqp,
defined below, is nonzero due to the choice of a coordinate
system centered at the centroid of the disk, and not at the
center of mass of the system. Note that the expression for ugp
reduces to the square of the offset of the center of mass from

the disk centroid normalized by the fundamental length scale d.
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The effects of rotation yield two nondimensional
parameters, the Southwell coefficient § as defined in eqn.(2.1.9)

and the nondimensional rotor speed Q/ug:

2
- cos a , Q .

Q

Q2 =

8
€
w

0

Applying the normalization scheme to the stiffness matrix
in the equations of motion (2.1.7) yields nondimensional
frequency ratios and a stiffness coupling parameter. The
frequency ratios Ux/“B and “y/“B' defined below, quantify
the relative proximity of the uncoupled shaft translational
vibrational frequency to the natural frequency of a cantilevered
blade. The frequency ratios mnAJB and “E/“B express the
proximity of the uncoupled shaft pitching frequency to the blade

frequency. For 3 symmetric shaft these ratios are:

K K
2 ~XR ) ~YR
(81) .M (‘;’z) . M
) 02 o (J2 ’
B B B B
K
Knr Ker
<9_T_l_>2 ~ IP ) (U_E_)z B IP
W = 2 - 2
B Yp “g “p

A shaft translation-pitching stiffness coupling parameter

~

k also appears in the nondimensionalization. The parameter

ﬁ appears in a manner that is analogous to the parameter

wrps, which arises due to the fact that the origin of the
coordinate system is centered at the disk centroid and not the
center of mass of the system. This stiffness coupling ﬁ

arises because the origin of the coordinate system does not
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céincide with the axial location of the shear center. The shear
center is defined as the point along the rotor centerline where
the application of a transverse force does not result in any
pitching deflection of the rotor, and the application of a
pitching torque does not result in any transverse deflection.
For a system in which the shaft stiffness is symmetric with
respect to the x and y directions as seen in fig. 2.1, the
nondimensional stiffness coupling parameter is defined:

2 2

~ K
k = an = b£3 R
K

xR KnR KyR KgR

Applying this nondimensionaliztion scheme to the equations
of motion (2.1.7) yield the nondimensional egquation set (2.2.4).
Also, the uncoupled zero nodal diameter cosine and n>1 nodal

diameter sine and cosine blade modes nondimensionalize to:

by + [ 1+2 (%B)’]bo=o (2.2.5)
8 v+ [ 1+2 (22 7a =0 (2.2.6)
an wB n e
(n>1)
Bn+[1+g( t 1p =0 (2.2.7)



26

(2.2.4)
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Thus, for a symmetric rotor, there are nine nondimensional
paraﬁeters in the full problem:
urp inertial term coupling disk translation and
disk pitching motion
HTB inertial term coupling disk translation and
blade displacement
HpPB inertial term coupling disk pitching and
blade displacement
o ratio of blade modal mass to disk pitching
moment of inertia

stiffness term coupling disk translation and

~>

disk pitching
wyx/wp ratio of rotor uncoupled disk translational
frequency at Q=0 to isolated blade frequency at Q=0
un/ug ratio of rotor uncoupled disk pitching ’
frequency at Q=0 to isolated blade frequency at q=0
Q/wg nondimensional rotor speed

[} Southwell coefficient

The numerical values of these parameters for the MIT AE rotor are
given in Appendix A. Typical values of some of these parameters
for various generic types of turbomachinery are given in {9].

Den Hartog's analysis of a bladeless cantilevered rotor
{7] can be thought of as a special case of the present model. His
model describes the motion of a massive disk on a massless shaft
using a rotating coordinate system with its origin located at the
centroid of the disk. Shaft mass imbalance is therefore not
included. Of course, blade flexibility effects are also not
included. A further simplification is introduced by the use of a
coordinate system rotating not at the rotor speed Q, but at the
asynchronous whirl rate u. This transformation reduces the

problem to one of only two degrees of freedom: a radial disk
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deflection and a disk coning angle.
The Den Hartog approach to the simplified rotor yields only
three nondimensional parameters: the "disk" effect 6, the
elastic coupling E, and the nondimensional speed S. In
terms of the present nomenclature (for a symmetric rotor) they

correspond to:

ux vy
- W W
D = B = B (2.2.8)
Un UE .
“p “g
2 2
~ ~ K
E = k = an—- = YER (2.2-9)
Kxr $or Xor Ker
Q.
~ W
S = B (2.2.10)
W
X
“B

The whirl frequencies of the Den Hartog model are the four

roots of the characteristic polynomial:

~b -~ ~3 P ~2 el  ~
y 2+ 1% 2°S F_o 1 -0 (2.2.11)

De (E+1) E - 1 De (E-1)

o

where F is the nondimensional frequency:

o
|
wi: IC

= (2.2.12)

o |x

Equation (2.2.11) is well known and has been used extensively in
the design of cantilevered rotors. For a complete treatment of
the dynamics of a bladed disk - shaft system, the fully coupled

set of equations (2.2.4) should be considered. This higher order
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model is required when the interaction criteria, discussed
below, indicate appreciable interactions between the bladed disk
vibration and the shaft whirling motion.

The normalized equations of motion (2.2.4) yield a
convenient form for the evaluation of the criteria for
interaction between the bladed disk dynamics and the shaft
whirling motion. The basic question to be addressed is: under
what circumstances is the interaction between the blade motion
and the disk rigid body motion sufficient to warrant solving the
fully coupled equations of motion. If the interactions are weak,
then the bladed disk vibration and shaft-disk whirl problems may
be solved as two simpler analyses. The propensity for
interaction between the two motions is determined by the
proximity of the shaft translation and pitch mode fregquencies to
the uncoupled blade frequency [(9]. '

The procedure for assesing the strength of the interaction
requires a knowledge of the uncoupled blade natural frequency and
the uncoupled shaft natural frequencies (i.e. the frequencies of
the shaft assuming the blades are rigid). An estimate of the
shaft natural frequencies can be obtained by solving the 4x4
shaft motion submatrix in the upper left hand corner of eqgn.
{2.2.4). The resulting coupled shaft translation / pitch
frequencies are y:1 and w2, respectively. Therefore the
criteria for propensity of interaction will be determined by the
value of the two ratios: yi1/upg and w2/wp being close to
unity.

In the simple case of a rotor with relatively weak
translation-pitch coupling, the frequencies yi and w2z can be
approximated by considering only the diagonal elements of the
equations of motion. For a symmetric rotor with only disk
translational degrees of freedom, the ratio of the disk to blade

natural frequencies as a function of rotation rate is [9]:
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and for a rotor with only pitch degrees of freedom, the ratio of

the disk to blade natural frequencies is:

wg a L wnl g L
(%) + () |2 () + (52) |2
22 B B = B B (2.2.14)
W 2 2
B 1+ (B 1+ (8

B B

In gas turbines, the blade frequency uwpg is usually
higher than the shaft-disk coupled translation/pitch frequencies
w1 and w2 [9]). This implies that the uncoupled blade natural
frequency is usually above the first two shaft critical speeds.
In the case of the MIT AE rotor, the shaft stiffness and disk
inertia are such that the pitch dominated mode is higher than the
translation dominated mode. Hence, in this case, w2/upg is the
relevant parameter for the propensity of interaction criteria.
Note that the denominator of the w2 /up expression, eqn.

(2.2.14), contains the term: ¢(Q2/wg)?. Since in gas turbine
blading the Southwell coefficient 2 is usually greater than one,
the interaction criteria u:/yp decreases with increasing

rotor speed. Therefore, if the shaft-disk pitch and blade
frequencies are well separated at zero rotation speed, then the
modes will tend not to interact at higher rotor speeds. Thié
effect can be seen schematically in fig. 2.3.

The magnitude of the interaction between the blade motion
and the shaft whirl can be quantified by the degree of coupling
between them. The influence of the coupling magnitude criteria
upp and upp are discussed by Crawley and Mokadam {9]. ‘The
degree of coupling is also dependent on the ratio of the blade

modal mass to the rotor pitching moment of inertia p. The
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inertial coupling terms appear in eq. (2.2.4) as N/2¢purg and
N/2'puPB. The strong dependence of these terms on the cosine

and sine of the effective stagger angle ¢ is seen from the
definitions of ppg and upg, respectively. If the stagger

angle g is zero, then the blade motion-disk translation inertial
coupling parameter upg is maximized and the blade motion-disk

pitch inertial coupling parameter ppg is zero. If o is egual to

w
3
0

and pg is zerc.
The term in the equations of motion (2.2.4) that iﬂdicates
the magnitude of the gyroscopic coupling is:
Q N

A

The stiffness matrix in eq. (2.2.4) c“ows centrifugal coupling
between the disk rigid body motion and blade displacement in the

destiffening form:

g 2 N Q 2
- og \ Zoupg 2and - ug \ 2 P¢pp

These terms describe the magnitude of stiffness coupling and,
like the inertial and gyroscopic coupling magnitude criteria,
they have an implicit dependence on blade stagger angle.

The equations of motion of rotating flexible shaft-rigid
disk-flexible blade rotor have been presented. They are expressed
in both dimensional and nondimensional form. The relevant
nondimensional parameters have been identified and their
importance in determining the degree to which the bladed disk
dynamics and the shaft whirling motion are coupled was explored.
The subsequent chapters of this report will be concerned with
identifying the system constants in the equations of motion for
the MIT Aerocelastic Rotor and with the results of a series of
experiments performed on the rotor to verify the analytical

formulation.




3. Experimental Facilities ‘

In order to experimentally document the bladed disk-shaft !
dynamic interaction of a typical fan, an extensive set of |
experiments were conducted, and the results compared with the
model presented in Chapter 2. The experiments were carried out on
the MIT Aeroelastic (AE) Rotor installed in the MIT Blowdown
Compressor Facility of the MIT Gas Turbine Laboratory, which is
depicted in fig. 3.1. The dynamics of the MIT AE bladed disk
assembly have been documented by Crawley [8]. The use of this
facility for transient testing of compressor stages for
performance and aeroelastic response has been well documented
[6,10]. Mokadam [5] also discussed the use of this facility for
high speed rotor whirl testing in vacuum as a complementary

facility to the low speed Whirl Spin Rig.

3.1) Rotating Assembly

An extensively instrumented rotor, the MIT AE rotor, was
mounted in the test section of the Facility as seen in fig. 3.2a.
The rotor is aerodynamically typical of modern high bypass ratio
fans with: a blade hub to tip ratio of 0.5, a blade aspect ratio
of 2, a design pressure ratio of 1.6, and axial and tip Mach
numbers of .5 and 1.2 respectively. The structure and dynamics
of the rotor has been fully described by Crawley [8] and Mokadam
[5]. The rotor is cantilevered in the test section at the front
of a shaft supported by two forward angular contact thrust
bearings and a single rear spring loaded angular contact bearing.
Flexible couplings forward and aft of the rotor-shaft system
dynamically isolate the system from the forward slip rings and
rear drive motor. The rotor was installed in the Blowdown
Facility together with the forward slip ring assembly in order to
be able to monitor the 23 blade piezoelectric blade root

displacement transducer signals. A smaller rear set of slip rings
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carried disk accelerometer and blade strain gage signals.

A degree of nonlinearity in the dynamic stiffness behavior
of the shaft support had been observed in the low speed tests
which used angular contact bearings. In order to reduce the
degree of nonlinearity, initial planning called for the use of
alternative bearing types such as Conrad roller bearings.
However, in order to compensate for the thermal growth of the
shaft during testing, the continued use of the spring prelocaded
angular contact bearings was indicated. It should be noted that
even with ABEC-7 super precision bearings, the operating DN of
the bearings exceeded their maximum rating for the lubrication
available. The bearings therefore had a short life expectancy
under the high speed test conditions. This required that the time
spent testing at speed be kept as short as possible.

In order to maintain the cyclic bearing loads due to mass
imbalance at a minimum, the rotor assembly was balanced prior to
installation. The assembly was balanced according te ISO Grade
G2.5 Gas Turbine Balancing Specifications, with a residual
imbalance of less than 1 gram- inch in each of two balancing
planes. Any loads due to this small residual imbalance would
appear as steady loads in the rotor frame of reference and as a
once per revolution periodic load in the nonrotating frame of
reference.

With the balanced rotor installed in the test section, the
forward slip ring assembly was then mounted. Considerable effort
was expended to assure that the axes of rotation of the rotor and

the slip ring assembly were aligned.
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3.2) Instrumentation

The instrumentation associated with whirl testing of the
MIT AE rotor in the Blowdown Facility included instrumentation on
the rotor and on the nonrotating support structure. On the
rotor, piezoelectric displacement transducers and semiconductor
strain gages were used to monitor blade motion and miniature
accelerometers measured accelerations of the disk in the plane of
rotation. Instrumentation associated with the nonrotating frame
of reference included accelerometers to monitor motion of the
bearing support housing, and force transducers to measure the
excitation forces applied to the bearing housing.

The blade piezoelectric displacement transducer
configuration is shown in fig. 3.3. With the forward slip ring
assembly installed, all 23 blade root piezoelectric displacement
displacement transducers could be monitored. The rear set of
slip rings carried signals from the three Bolt, Beranek and
Newman (BBN) Model 501 miniature accelerometers. The three
accelerometers were circumferentially mounted at 120° increments
and were sensitive to motion of the disk in the plane of
rotation. The rear slip rings also carried signals from two
semiconductor blade strain gauges.

The disk accelerometers operated intermittently during
rotating tests and produced noisy signals. Therefore the blade
piezoelectric displacement transducers were used as the primary
indicator of rotor response. In addition to their higher signal
to noise ratio, the blade displacement transducers were sensitive
to both in-plane translation as well as out-of-plane pitching
motion of the disk. The disk accelerometers were only sensitive
to disk in-plane translation motion, a serious limitation for
detecting disk pitch modes. The disadvantage of using the blade
transducers was that for the lower system modes, those well below
the blade first bending frequency, a small amount of blade motion

would occur for a relatively large amount of disk motion. Thus
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the detectibility of disk motion by monitoring only the blade
response was somewhat impaired.

A proximity sensor mounted in the center body was used as
a tachometer. By sensing the passage of each the 115 teeth of a
gear wheel mounted on the shaft, the tachometer produced a 115
per revolution signal. The tachometer signal was monitored with a
frequency counter located at the rotor motor drive control panel.

During tests, which sometimes lasted up to 200 seconds,
data were recorded using three different methods. The primary
data logging device was a Hewlett-~Packard (HP) 3960 FM
Instrumentation tape recorder. This 4 channel instrument recorded
2 channels of forcing input (described in section 3.3) and 2
channels of blade displacement response. With these simultaneous
measurements of input and response, system transfer functions
could be determined. The second method of recording the data was
an Ampex 14 channel FM tape recorder. This recorder was used as a
redundant method of logging the forcing input and blade response
data, as well as the tachometer signal.

After the test, the tape recorded analog data were played
back into an HP 3582 dual channel spectrum analyzer for frequency
domain inspection of the data. Graphical records were obtained by
transferring the spectral data from the spectrum analyzer over an
IEEE-488 bus into an IBM Personal Computer.

The third method of data logging was a direct digitization
of up to 32 channels of data during the test. Because of memory
limitations in the A/D system, only 200 ms of data could be
digitized, using at a rate of 5 kHz per channel. This digitized
data provided an instantaneous snapshot of the rotor system state
at a particular speed and forcing frequency. This A/D system,
manufactured by LeCroy Inc. and based on the CAMAC convention,
was controlled by the MIT GTL PDP 11/70 computer. Post test
signal processing of the digitized data was also performed on the

11/70 computer.
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3.3) Whirl Excitation System

Some modifications to the test section were required in
order to mount the rotor and whirl excitation actuators in the
Blowdown Compressor Facility. The test section was machined in
order to mount the two Ling 100 1lb electromagnetic shakers on the
casing, circumferentially 90 apart as seen in fig. 3.4a. The

el 2y = 3
WilliLdl TALL

ation forces were trancsferred to the bearing housing
of the test section via push rods connected to the shakers as
seen in fig. 3.4b. The whirl excitation system employed in the
blowdown facility was a modification of that used in the low
speed whirl experiment [5].

Some trial and error was necessary in order to develop an
appropriate experimental protocol for the whirl testing. Because
of the potentially nonlinear response of the bearings, and the
frequency shifting phenomena observed in the low speed rig data,
any possibility of using impulsive or broadband excitation was
discarded. Sine dwell type testing would be difficult because of
the expected limited lifetime of the bearings. Therefore a slow
sine sweep was chosen as the best system identification protocol.

Yet there still remained several detailed questions.
Should a pure forward whirl, and then a pure backward whirl
excitation be used, or some combination like a standing wave?
Should the rotor speed be held constant and the excitation
frequency swept, or should the excitation frequency be held
constant and the rotor speed swept?

Due to the rather cumbersome manual control of the rotor
speed, it was decided that it would be held constant, and the
excitation would be swept in a controlled way. To simplify the
data interpretation, a pure forward or backward whirl excitation
would be used. The increased operator workload of the high speed
testing required that the forcing sweep be automated. A Wavetek

Model 184 sweep function generator supplied a linearly sweeping
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signal between two preset frequency limits over a fixed duration.
This frequency sweeping signal served two functions. It supplied
the command signal to shaker #1 as shown in fig. 3.4a. It also
supplied the phase and frequency reference signal to a Wavetek
Model 186 phase lock sweep function generator. The phase lock .
generator would track the frequency of the input reference signal
and would output a signal with the required predetermined phase
shift. The output of the phase lock generator served as the
command signal for shaker #2. The phase difference between the
two signals was monitored with a Wavetek Model 750 phase meter.
It was the preset phase angle that determined whether the
excitation would excite either forward or backward whirl.

The outputs of the two function generators were input to
two dedicated Altec Model 9440A 800 Watt amplifiers. The output
of the amplifiers were passed through impedance matching
transformers to the Ling Model 420 100 1b. shakers as seen in
fig. 3.4a.

The shakers pushed on the bearing housing of the rotor
through push rods instrumented with PCB Piezotronics Model 208
force transducers. The force transducers provided a direct
measurement of the excitation force applied to the bearing
housing. Due to air convection cooling and space considerations,
the shakers were mounted on the outside of the test section
casing. In order to apply the excitation forces to the bearing
housing in the vacuum of the test section, dynamic O-ring seals
isolated the segment of the pushrod inside the vacuum from that
attached to the shaker as seen in fig. 3.4b.

Diametrically opposed to the push rod contact points on
the bearing housing were two Endevco Model 7701 high sensitivity
piezoelectric accelerometers. These allowed for a direct
measurement of the response of the bearing housing centerbody to
the applied excitation and other rotor dynamic loads.

Following the labelling convention shown in fig. 3.4b, the
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forcing applied to the nonrotating bearing housing is of the

form:

F =Fsinw t
N1 FN

F =Fsin(u t+¢) (3.3.1)
FN

N2

If the phase of the force applied by shaker #2 leads the force
y shaker #! by 2¢ &
rotating resultant force vector is produced. Since the rotor
turns in the counter-clockwise direction, the resultant force
vector rotates in the opposite direction or backwards with
respect to the rotor. For a shaker forcing frequency wpy, the
rotor senses this excitation at a shifted frequency ypgr. The
magnitude of the frequency shift is the relative angular speed
between the nonrotating structure and the rotor, Q. Since the
rotor and the rotating force vector generated by the shakers
rotate in opposite directions, the frequency shift in excitation
sensed by the rotor is additive. The rotor is then excited with a

backward whirl force at the frequency:
W =w +Q (3.3.2)

This corresponds to curve 1 in fig 3.5 which illustrates the
forcing frequency shift as a function of rotor speed.

If the force applied by shaker #2 lags the force applied
by shaker #2 by 90 degrees (¢ = -90°), then a counterclockwise
rotating resultant force vector is produced. In the case where
the force vector is rotating faster than the rotor (wpy>Q), the
force vector is seen in the rotor reference frame to rotate in
the direction of rotor rotation. This excites forward whirl and

is sensed by the rotor at the frequency:



39

=0 -2 . (3.3.3)

w FN

FR

This forcing condition corresponds to curve 2 in fig. 3.5.

The other possible forcing condition with ¢ = -90° occurs
when the rotor is turning faster than the rotating force vector
(Q>uFNy). The force vector then seen in the rotor reference
frame to rotate opposite to the direction of the rotor rotation.
This excites backward whirl and is sensed by the rotor at the

frequency:
) =Q - u . v (3.3.4)

This forcing condition corresponds to curve 3 in fig. 3.5. Thus,
by controlling the shaker excitation frequency uwpy and phase
angle ¢ of the signal generators, a forward or backward whirl
excitation of known frequency ypgr can be created in the rotor
frame of reference. |

In this chapter the experimental rig used to perform the
structural dynamic whirl testing on the MIT AE Rotor in the
Blowdown Compressor Facility and the whirl excitation system has
been described. In the following chapters the identification of
the system inertial and stiffness parameters and the results of a

series of rotating whirl tests will be described.




4. Determination of Rotor Structural Properties

The prediction of the dynamic behavior of a rotating
bladed disk on a flexible shaft system depends on an accurate
knowledge of the structural properties of the system. This
chapter describes the procedures employed in estimating and
measuring the inertial and stiffness properties for the MIT AE
rotor.

The system inertial parameters other than blade mass terms
were determined by direct measurement of physical dimensions of
components. Blade modal mass and mass coupling parameters were
determined by calculations from holographic mode shape
measurements. These mass calculations are described in section
4.1.

The stiffness properties of the system were much more
difficult to determine. Direct static stiffness measurements of
the shaft-bearing system yielded inconsistent results, as
described in section 4.2. The approach finally used in
determining these stiffnesses was to perform modal surveys of the
nonrotating disk-shaft system and fit the dynamic data to a
simple rigid disk-flexible shaft model. This approach is

described in section 4.3.

4.1) System Mass Properties

The mass properties of the shaft-disk system were readily
determined by a knowledge of component geometries and the
material densities. The dimensions of each rotor part was found
by direct measurement or, in some instances, by inspection of the
dimensions on mechanical drawings.

The mass properties of the blades were determined by the
holographic measurement of the blade cantilever bending mode
shape at the midpoint of each grid cell on a 10x20 blade grid.

This data, together with the measurement of the cell volumes were
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applied to the integral definitions of me, mi, m2, and mQ
given in section 2.1. The resulting inertial properties of the

MIT AE rotor are listed in Appendix A.

4.2) Static Stiffness Tests

Determining the necessary stiffness terms consisted of
determining the blade modal stiffness Kg and the effective
shaft/support translation, pitch, and coupling stiffnesses Ky,
Ky, Kxp. The blade modal bending stiffness Kp was
determined from a knowledge of the isolated blade natural

frequency of 374 Hz, the blade modal mass mo, and the relation:

. (2.2.2)

Mokadam [5] describes attempts to measure effective
bearing and shaft flexibilities of the low speed whirl spin rig
by the application of static in-plane forces and out-of plane
moments. These measurements entailed the use of dial gauges to
measure the resulting small deflections. Subsequent tests
involved the use of more sensitive inductive proximity sensors.
Both series of tests displayed large scatter, low repeatibility
and pronounced nonlinearity in the translation and pitch
stiffnesses. These effects can be attributed to the difficulty
of measuring the small resultant displacements and to the complex
kinematics of angular contact ball bearings under the various
loading states. When fitted to a straight line in order to
approximate a linear stiffness, the data yielded compliance
coefficients one or two orders of magnitude different from those
required to reproduce the dynamic behavior of the system given
the known mass properties. Further uncertainty would result in
extrapolating the measurements taken on the low speed spin rig to
the Blowdown Compressor Facility.

A different approach to determining the stiffnesses of the

shaft-bearing system was therefore required. Dynamic nonrotating
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modal surveys were seen as the most accurate possible method of
measuring the effective stiffness coefficients of the MIT
Aeroelastic (AE) rotor as mounted in the Blowdown Compressor

Facility.

4.3) Nonrotating Dynamic Stiffness Determination

The technique employed in determining the dynamic
stiffness properties was to calculate the effective stiffnesses
for the system in the Blowdown Facility given the known mass
properties and the measured shaft-disk natural frequencies and
mode shapes. In the analysis necessary to back calculate these
stiffnesses, the blades were assumed to be rigid bodieé fixed to
the disk hub. As a result, the data were fit to a model of a
simple rigid disk on the end of a symmetric cantilever shaft as
shown in fig. 4.1a. Let the two system degrees of freedom be
defined as the in-plane translation of the disk (g9x) and the
out-of-plane pitching of the disk about its diameter (qn), as
shown in fig. 4.1(a). With rigid blades, the homogeneous system

equations of motion would then be:

+ =0 (4.3.1)

P n Xn N n

The testing for the two modes of the simplified system
described by eq. (4.3.1) was accomplished by placing Endevco
model 2222c¢ minia;ure piezoelectric accelerometers on various
points of the rotor while sweeping the excitation frequency of
the electromagnetic shakers. The system resonances were noted as
the frequencies at which the response peaked and the phase
shifted abruptly through 90° during the forcing sweep.

In the modal testing, two shaft-disk modes were found, and

are sketched in figures 4.1b and 4.1c. A certain degree of system
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asymmetry was present, that is, the frequencies measured when the
disk was excited in the x direction were not exactly identical
with those measured in the y direction. These asymmetrical
structural properties resulted in pairs of modes at similar but
not identical frequencies but with approximately the same
eigenvector. For the purposes of the fit of the nonrotating
dynamic model of eq. (4.3.1) to the system stiffnesses, the
system was assumed to be symmetric, and averages of the paired
frequencies were used.

The low frequency mode was seen at 222 + 5 Hz (the range
representing the degree of asymmetry) and was characterized by a
predominant disk rigid body translation motion in bhase with disk
pitching. The higher mode was found at 325 * 5 Hz and consisted
of a larger degree of disk rigid body pitching motion out of
phase with disk translation. The experimentally measured modal

vectors were determined to be:

dx | |0.123 m
{vi} = qn, - 1.00 rad

dx -0.054 m ]
{Yz} = ‘qn } B ‘1.00 rad

A good test of the consistency of the experimentally observed
mode shapes is to calculate their degree of orthogonality with
respect to the "known" mass matrix. The experimental mode shapes
were not strictly orthogonal with respect to the mass matrix of 2
DOF model. However, the normalized degree of nonorthogonality

defined below, was on the order of 3%

C Ly, 1 M)y, )°
(v Y IM) (v, 1 T{v,} [M]{v,}

= 0.03 (4.3.2)

where Y and y2 are the measured modal vectors, and M is the




mass matrix given in eg. (4.3.1).

With the two system modal frequencies and one independent
modal vector (the other modal vector being redundant due to the
need to satisfy the orthogonality condition) the three unknown
stiffness terms in eq. (4.3.1) can be determined. The stiffness
values that were determined by the fit of the nonrotating data to

the simplified 2 DOF model are:

[8-10N/m  -5.29 N ] _ s
| sym. 1.05 Nm ] ~°

v
Liv g

These stiffness values were subsequently used in the equations of
motion to predict the behavior of the MIT Aeroelastic rotor
system as a function of rotor speed.

In order to more thoroughly investigate the presence of
asymmetries in the rotor and its mounting structure, nonrotating
forced response sweeps were performed with the rotor shaft at
various angular positions, and with the forcing vector directed
at various angles. A useful feature of having two shakers which
are mounted 90° apart on the circumference of the test section is
that the vector sum of the shaker forces could be directed
through the rotor center line at an arbitrary angle. This was
accomplished by the proper selection of force amplitude and phase
angle for each shaker. Note that this procedure was different
than the whirl excitation scheme described in section 3.3. In
that case the shakers were driving at equal forcing amplitudes
and a +90° relative phase angle.

The asymmetries could have been present in either the
rotating assembly or in the nonrotating structure, or some
combination of both. In order to determine if asymmetries were
present in the nonrotating structure, fborcing sweeps were
performed with the resultant force vector acting at various
angles with respect to top dead center of the test section.

However the shaft was always rotated by the same amount as the
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change in the forcing direction angle in order.to maintain a
constant relative angle between the shaft position and the
forcing line of action. Since the forcing line of action was
always constant relative to the rotor, any asymmtries in the
nonrotating support structure would be apparent. Except when the
direction of the applied force vector coincided with a
nonrotating system principal direction, the response transfer
function exhibited behavior typical of mistuned oscillators. The
response shows showed two neighbouring peaks in the vicinity of
the slightly different system frequencies. This indicates that
there existed two principal directions for the stiffness of the
nonrotating structure. The natural frequencies assoéiated with
each principal stiffness direction was slightly different.

The procedure for testing for asymmetries in the rotating
system was more straight forward. The force application direction
was maintained constant with respect to the nonrotating
structure, while forcing frequency sweeps were performed at
various rotor angular positions. Only a slight degree of
asymmetry was detected in the rotating structure. This is to be
expected since the rotating structure is an axisymmetric
precision assembly while the rotor support structure consists of
welded struts, casings, and supports that were not necessarily
designed for elastic isotropy.

Response amplitude plots for disk motion as a function of
forcing frequency are shown in fig. 4.2. These plots show the
behaviour of the nonrotating disk pitch mode at constant load
direction and rotor position. Figure 4.2a depicts the mistuned
oscillator-type response for a forcing direction and rotor
position that do not correspond to the principal directions of
the system. Figure 4.2b shows the system behavior for a forcing
direction aligned with one of the principal directions on the
nonrotating structure and a rotor position aligned with a

principal direction of the rotating system. The response
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transfer function curve of fig. 4.2b indicates a single peak,
more typical of the the response of a single degree of freedonm

system than that of fig. 4.2a

4.4) Numerical Model of a Whirling Rotor

As a method of predicting the natural frequencies of
whirl of the MIT AE rotor in the Blowdown Compressor Facility,
the equations of motion (2.1.7) were solved using with the
experimentally determined mass and stiffness properties. The set

of equations (2.1.7) are of the form:

[MI{X} + [G]{X} + [K]{x} = Q (4.4.1)

Describing the system in state vector form:

 fix
{y} = ‘{X}l (4.4.2)

the normal modes were assumed to be of the form:
xt
{y} = {¢} e (4.4.3)

Upon substitution in eq. (4.4.1), the equations of motion are

then in standard eigenproblem form:
1
(Dl{e} = + (¢} (4.4.5)
where:

(4.4.5)

The system of equations (4.4.4) were solved using the well
known EISPACK [11] library of matrix eigensystem solution
subroutines. The entries of the dynamic matrix [D}] depend on the
rotation speed Q, therefore the normal modes and frequencies were
determined as a function of §. The behavior of the predicted

system natural frequencies as a function of rotor speed is shown
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in fig. 4.3a. The frequencies calculated from the equation are
referred to the rotating frame, i.e. the rotor fixed coordinate
system. The transformed natural frequencies, as they would appear
in the nonrotating frame are shown in fig. 4.3b. Note that the
forward and backward whirl curves still refer to whirl direction
as viewed in the rotor frame. The shaft stiffnesses determined by
the simple 2 DOF model fit of section 4.2 were used as well as
the inertial properties listed in Appendix A.

The predicted system behavior depicted in fig. 4.3 was
seen to differ from the experimentally observed natural
frequencies when the rotor was not rotating (Q = 0). The low disk
rigid body translation dominated mode which was experimentally
observed at 222 Hz was calculated by the model to occur at 219
Hz. The high disk rigid body pitching dominated mode was
experimentally observed at 325 Hz and was calculated at 315 Hz.
The blade one nodal diameter mode was experimentally observed at
388 Hz and was predicted to occur at 408 Hz. These discrepancies
can be seen by noting the experimentally observed frequencies in
fig. 4.3a. The primary reason for the discrepancy between the
observed and predicted Q@ = 0 natural frequencies is due to the
fact that the stiffness parameters input to eq. (4.4.4) were
determined by fitting the experimental disk rigid body dominated
mode dynamic data to a 2 DOF model which did not include blade
flexibility effects, eq. (4.3.1).The blade cantilever frequency
of 374 Hz and the observed disk rigid body pitch dominated mode
frequency of 325 Hz are in too close proximity to ignore the
flexibility of the blades in the high disk mode motion. As a
result the subsequent inclusion of blade flexibility in the
system equations of motion (4.4.4) depresses the Q = 0
frequencies for the two lower modes which primarily consist of
disk translation and pitch motion, while increasing the blade one
nodal diameter frequency. The disk pitch mode was in closer

proximity to the blade cantilever mode for Q = 0 than was the
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disk translation mode. Hence the inclusion of the blade
flexibility effects in the model depressed the disk pitch mode
more than the disk translation mode.

Since the elements of the stiffness matrix were chosen to
best fit the nonrotating modes, it was decided to further refine
the fits using the full system model. This refinement will be
done in two steps. First only the support stiffnesses will be
modified, and later both the support and blade stiffnesses will
be modified.

In order to obtain a more refined fit for the support
stiffnesses, the measured frequencies used in the earlier fit
were precompensated. This precompensation for the decrease in
the frequency of the pitch mode predicted by eq. (4.4.4) was
achieved by changing the dynamic data input to the 2 DOF
stiffness fit from the experimentally measured values of 222 Hz
and 325 Hz to 222 Hz and 335 Hz.

A second discrepancy in the prediction of the system
natural frequencies shown in fig. 4.3a is the high rotor critical
speed (defined as the point of intersection of the low forward
whirl branch with the w = 0 axis). This point is experimentally
known to occur in the vicinity of @ = 215 Hz. In order to
precompensate for this difrference, the coupling stiffness KXn
was reduced by 35% from that predicted in section 4.2. The
resultant Kx and Ky for a value of Kxn chosen to be 35%
less than the value used in fig. 4.3 was then calculated from
eq. (4.3.1). The decrease in Ky, corresponds to a decrease in
the stiffness coupling parameter k from 0.331 to 0.164. The
2 DOF system stiffness matrix for the precompensated system is

then:

5.47 N/m  -3.44 N 6
(K] = [sm. 1.32 Nm] 10

This is approximately the best fit to the @ = O data that can be
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made without modifying the blade stiffness.

The resultant system natural frequency behavior as a
function of rotor speed is shown in figures 4.4a and 4.4.b. The
effect of using the precompensated 2 DOF stiffness data in the
full 6 DOF whirl model is a slightly better agreement for the
disk pitch and translation modes at zero rotation speed. The
Q2 = 0 disk translation mode is then predicted to occur at 220 Hz,
which is in better agreement with the experimentally determined
frequency of 222 Hz than the prediction using the baseline fit.
Also, the 9 = 0 disk pitch mode was predicted to appear at 317 Hz
which agrees more closely with the measured mode at 325 Hz.
However, the nonrotating blade one nodal diameter mode is further
raised from 408 Hz, the prediction using the baseline stiffness
fit shown in fig. 4.3a, to 416 Hz in fig. 4.4a. This error in
predicting the Q@ = 0 blade one nodal diameter mode prompted
another attempt to better fit the nonrotating data.

A second approach to precompensating the dynamic stiffness
data follows in a manner similar to the first compensation
scheme. 1In addition to the to the measures taken in the first
scheme, the blade modal stiffness KB determined by eq. (2.2.2)
was decreased by 19% in order to precompensate for the incorrect
prediction of the Q@ = 0 blade one nodal diameter modes at too
high a frequency. The results of this final refinement are
plotted in the rotor frame in fig. 4.5a and in the nonrotating
frame of reference in fig. 4.5b. The results of this
precompensated stiffness fit were used as the prediction of the
system natural frequencies of whirl in order to assist in
choosing the correct operating point for the whirl experiments.
The correlation between the predicted and the experimentally
determined frequencies for both the zero rotation speed and those
speeds tested will be discussed in section 5.4. The results of
the three stiffness fits are summarized in Table A.2.A

Thus as a result of direct measurement of the inertial




properties and careful modal surveys of the rotor while not
rotating, a complete set of system parameters have been found.
Solving the system equations of motion with these parameters
yields a reasonable prediction of the nonrotating behavior of
the system and its the critical speed. The parameters are all
internally consistent with the nonrotaing mode shapes, that is
they satisfy the modal orthogonality relationships. In the next
chapter the results of an experimental program of whirl testing
on the MIT AE rotor will be discussed and the predicted and

measured frequencies will compared.



5. Whirl Test Results

A program of experimental testing was carried out to
determine the natural whirl frequencies of the MIT Aeroelastic
rotor installed in the Blowdown Compressor Facility. The tests
involved running the rotor at constant rotational speed while
applying an excitation force phased to excite either forward or
backward whirl. The response of the system was monitored by means
of the blade piezoelectric displacement transducers. Peaks in the
blade response amplitude were found to occur during the constant
amplitude forcing sweeps. These resonant peaks were used to
define the natural frequencies of the system.

The tests were performed at specific constant rotation
speeds for both the forward and backward whirl excitation
phasing. The rotation speeds chosen for study were: Q@ = 30, 60,
90, 120, 150 Hz (1800, 3600, 5400, 7200, 9000 rpm). The data
obtained up to and including @ = 150 Hz was sufficient to
illustrate the trends of the rotor system natural whirl
frequencies with rotor speed, and to allow for comparison of
predicted and experimental results.

Tests were also carried out at 5 Hz rotation speed in
order to obtain a check of the nonrotating natural frequencies
determined by this procedure with those reported in section 4.3
for @ = 0. The natural frequencies at this low speed are only
influenced slightly by the effects of rotation, hence the natural
frequencies determined by the rotating instrumentation (the blade
piezoelectric displacement transducers) were correlatable to the
natural frequencies determined in the nonrotating modal surveys.
The low speed tests were also useful in order to determine the
observability of the modes of the system by the rotating
instrumentation. Note that during the nonrotating modal surveys,
discussed in section 4.3, it was possible to employ many shaft,
disk, and blade mounted accelerometers in addition to the blade

displacement transducers which comprised the rotating
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instrumentation.

The technique employed for whirl testing is described in
section 5.1. The verification of the successful excitation of the
rotor in whirl is illustrated for both the forward and backward
whirl case in section 5.2. The reduction of the forcing sweep
data is shown in section 5.3, and the comparison between the
predicted system frequencies and those experimentally measured is
made in section 5.4. Finally, the experimental results are

tabulated in Appendix B.

5.1) Whirl Test Procedure

The rotating whirl tests performed in the Blowdown
Compressor Facility were essentially forced response tests using
@ slowly varying sinusoidal sweep technique. The natural modes of
the rotor running at a constant speed were excited by sweeping in
frequency, with the shakers set to force in a fixed whirl
direction (forward or backward). During the development of the
experimental technique single shaker, impulsive, and broadband
excitation techniques were also evaluated. However due to the
complex and possibly nonlinear response, clear interpretation of
the data was best achieved using sine sweeps phased for pure
forward or backward excitation.

An important consideration in devising the experimental
procedure was that the total elapsed time during a test be kept
as short as possible, especially at high speeds. This was done in
order to minimize the run time on the bearings which, as
previously discussed, were running above their DN rating. Bearing
failures had previously occurred in the blowdown facility and,
given the vigourous nature of the whirl forcing excitation, such
an event was a major concern. In addition to influencing the test
procedure, this concern for bearing life was what set the choice
of a maximum test speed of y = 150 Hz (9000 rpm). Another

motivation for keeping test times short was to prevent the drive
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motor from overheating. The motor temperature was monitored
during the tests by a thermocouple on its casing.

At the beginning of a test run, the test section of the
Facility was evacuated to a vacuum of approximately 0.1 mm Hg.
During this pump down time the LeCroy A/D system was initialized
and the desired forcing sweep range and sweep rate was set on the
Wavetek Mod. 184 master sweep function generator. The Wavetek
Mod. 186 phase lock slave function generator was set for the
proper phase difference with respect to the Mod. 184 master sweep
generator signal. These excitation signals were input to the two
separate Altec 800W power amplifiers, the gains of which were set
for the desired forcing amplitudes. Typical forcing amplitudes
were measured at 80 1lbg (peak to peak) by the PCB Piezotronics
force transducers.

When the desired vacuum was achieved the test would begin.
The HP 3960 FM recorder and the Ampex FM recorder were set to
start recording and the rotor was brought up to the desired
rotational speed. When the target rotational speed was reached,
the forcing sweep was started. Typically frequency sweep rates
were approximately 1 Hz/s. During the sweep the rotor speed was
maintained constant by manually correcting the motor input power
and monitoring the tachometer. Typically the rotor speed was held
stable within 0.5 Hz during a test run. At a predetermined
forcing frequency during the sweep, the A/D was triggered and 32
channels of data were digitized at a rate of 5 kHz per channel
for 200 ms duration. Of course the FM tape recorders were
recording data during the entire test run. At the end of the
forcing sweep the shaker excitation and the analog recorders were
turned off. The rotor was stopped, and the A/D data was
transferred to the PDP 11/70 computer for storage and later
analysis.

After the test the primary data, the 2 force transducer

and 2 blade displacement signals recorded on the HP recorder,
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were played back and inspected on an oscilloscope to ensure that
no loss of the primary instrumentation occurred during the run.
One force transducer and one blade signal were played back into
the HP 3582A spectrum analyzer for blade response amplitude
inspection as a function of forcing frequency. Provided that the
data appearred to be consistent, all the data was archived to
await detailed data reduction. The data reduction procedure will

be discussed in section 5.3.

5.2) Verification of Whirl Excitation Direction

The shaker excitation system described in Section 3.3 was
designed to excite the rotor at any desired frequency and whirl
direction, independent of the rotor speed. There remains the
question of whether this excitation system was successful, and
how pure the forward and backward whirl excitation was. This
excitation process was monitored at four points: at the input to
the shaker amplifiers (the output of the signal generators) by
phase and voltmeters; at the input to the bearing housing
centerbody by the the force transducers; by the response of the
centerbody by two accelerometers; and by the response of the
blades. By analyzing these signals, it will be shown that the
target whirling modes and frequencies were successfully produced
by the shaker system. The presence of the excitation patterns
will first be shown for the forward whirl case, then for the

backward whirl case.

5.2.1) Forward Whirl Excitation Case

As an example of the successful excitation of forward
whirl motion, the case of the rotor turning at Q@ = 120 Hz (7200
rpm) will be considered. The response of the bearing housing
centerbody will first be examined, then the displacement of the
blades will be shown. The time history of the forces applied to

the bearing housing centerbody are shown in fig. 5.1a. The
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shakers are each applying a sinusoidal force at the frequency
wpN = 449 Hz and are phased such that the force applied by
shaker #2 lags that of shaker #1 by 90°. This corresponds to a
phase angle ¢ of -90° in eq. (3.3.1), and therefore a forward
whirl excitation. As can be seen from the excitation system
configuration diagram in fig. 3.4b, this ¢ = -90° excitation
pattern produces a resultant force vector that rotates at a
frequency of wpy = 449 Hz in the direction of the rotor as
viewed in the nonrotating frame.

The spectral content of the signals from the force
transducers are shown in fig 5.2. The plots, which weré produced
by power spectral density (PSD) software on the PDP 11/70, are
the frequency domain representation of the signals shown in fig.
5.1a. The plots both show peaks of nominally equal magnitude at
exactly at the forcing frequency of wgy = 449 Hz. Therefore the
force applied to the system by the two shakers exactly follows
the commanded force, i.e. two force components of equal
amplitude, a -90° phase difference, and of a single pure harmonic
content of the desired excitation frequency. '

Next the response of the nonrotating bearing housing
centerbody to this excitation will be examined. The acceleration
response of the bearing housing centerbody is shown in fig. 5.1b.
The signal from accelerometer #2 (located diametrically opposite
to shaker #2) lags the signal from accelerometer #1 (located
diametrically opposite to shaker #1) by about 90°. This
indicates that the nonrotating structure did respond to the
excitation force vector, which was rotating in the direction of
the rotor at a speed of wpy as seen in the nonrotating frame.
However note that the response amplitude of accelerometer #1 was
about three times greater than that of accelerometer #2. Thus the
bearing housing centerbody moved along a nominally elliptical

pattern in the direction of the rotor at an inertial angular rate

of WEN *
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Similarly, the power spectral densities of the bearing
housing accelerometer signals are shown in fig. 5.3. A sharp
spike is seen in the PSD of accelerometer #1 at wpy = 449 Hz
while the corresponding spike on the PSD of accelerometer #2 is
only about one ninth the magnitude. This is because the
acceleration amplitude of the two accelerometer signals differed
by a factor of three and the PSD amplitude is proportional to the
square of the signal amplitude. This verifies that the bearing
housing centerbody did respond in a forward whirling motion at a
frequency equal to the excitation frequency, although in an
elliptic rather than circular pattern. The reason for this
preferential direction is suspected to be associated with a
nonuniformity of the centerbody support structure in the Blowdown
Facility. Other peaks in the PSD amplitude traces can be seen at
integer multiples of the rotor speed Q, primarily at gg = Q.

The additional once per revolution response is of course due to
the slight residual imbalance of the rotor exciting the support
structure at the rotation speed.

Having established that the nonrotating centerbody
responds to the whirl excitation at wypy, it remains to be
determined how the excitation is viewed in the rotating system
and how the blades respond. The transformation of forces from
the nonrotating to the rotating system was discussed in section
3.3 and summarized in fig. 3.5. The case being considered is:
shaker phase angle ¢ = -90°, shaker excitation frequency upy =
449 Hz, and a rotor speed of @ = 120 Hz (7200 rpm). Since the
inertial forcing frequency uwpy is greater than the rotor speed
Q, the rotating assembly should sense a rotating force vector at
a frequency of: ppr = wpy-? = 329 Hz and rotating in the
direction of rotor rotation as viewed in the rotor frame. This
corresponds to a point on curve 2 of fig. 3.5, which is the
forward whirl excitation characteristic. The characteristics to

establish this specific point are shown in fig. 5.4, superimposed
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on the predicted system resonance plot of fig. 4.5a. Thus one
would expect the blades to respond at wpg = 329 Hz in a one
nodal diameter forward whirl pattern.

The time response of the blade piezoelectric displacement
transducers to the excitation pattern are shown in fig. 5.5 in
their correct relative angular positions on the rotor hub. The
signal from blade displacement transducer #1 is repeated after
the signal from blade transducer #23 for reference. These
response signals were recorded simultaneously with the excitation
signals by the LeCroy A/D. By inspection, it can be seen that
the dominant displacement pattern of the blades is a one nodal
diameter mode with a nominal interblade phase angle of: 8 =
3600 /23 blades = 15.7° and the sense of the travelling wave is in
the forward whirl direction. Therefore the blades are responsing
to the forward whirl excitation. Note that the signal from blade
displacement transducer #2 is null because its wire insulation in
the forward slip ring assembly was damaged, and the signal was
shorted to ground. Constraints in the Facility test schedule did
not permit a shutdown to remove the slip ring assembly and repair
the wire.

In order to determine the frequency content of the blade
response, the power spectral density of a typical blade
displacement transducer (#9) is shown in fig. 5.6. A large peak
is seen at the frequency of the excitation in the nonrotating
frame of 449 Hz (all blade signal frequencies are referred to as
frequencies observed in the rotor frame). Response is also seen
at the target forcing frequency: wpr = WpN~-R = 327 Hz. A
small peak is also seen at the frequency at which backward whirl
would be sensed in the rotating frame: wpy+Q = 571 Hz. Two
possible mechanisms for the appearance of these undesired whirl
response frequencies are: responses stemming from asymmetries in
the bearing support structure and amplitude differences between

the two shaker forces during the excitation sweep.



58

For a rotor system with stiffness asymmetries in both the
nonrotating structure and in the rotating assembly, the resulting
equations of motion expressed in any coordinate system will
involve periodic coefficients. The forced response or
nonhomogeneous solutions to periodic forcing inputs can be seen,
by Floquet or harmonic balance methods [12], to involve
frequency components shifted from the forcing frequency by
harmonics of Q. For a forward whirl excitation, a symmetric
linear system would respond at the fregency of excitation
(UFN"Q)' but a nonsymmetric system would also respond at:
LFN—2%, Wpy, WENTS, etc. . Although the system asymmetries
were relatively weak in the rotating structure and slightly more
apparent in the nonrotating structure, this effect may be the
cause of the unexpected response frequencies.

Blade frequency response shifts due to amplitude
differences in the shaker output forces are readily explained
within the realm of linear theory. Consider a forcing input to
the bearing housing centerbody with a fractional amplitude

difference 2e¢ between each shaker:

F

N1 (1+e) £ s:.nuFNt

FN2 (1-e) £ sin(uFNt+¢)

For the case of forward whirl with wpy > Q@ and ¢ = -90°, the

rotor senses the following excitation pattern:

F
R1

FRZ

[]

£ Sin(uFN-Q)t + ef sin(uFN+Q)t

- f cos(uFN-Q)t + ef cos(uFN+Q)t

Therefore a component of backward whirl of magnitude ef
and frequency wpy+ exists in the rotor excitation as sensed
in the rotating frame. Thus a response is to be expected at this
frequency if the shakers are not producing equal force
amplitudes, or in an analogous manner, the bearing centerbody

does not respond with equal receptance to a symmetric excitation
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pattern. It was shown in fig. 5.1b that the centerbody responded
with unequal amplitudes in the two orthogonal directions in spite
of the nominally equal excitation amplitudes. Therefore a
possible mechanism for the blade response at the undesired whirl
frequency, the frequency corresponding to backward whirl, is the
unequal response amplitude of the bearing housing centerbody to
the forward whirl excitation.

In the power spectral density plot of the displacement
response of blade #9, shown in fig. 5.6, it is evident that the
blade is also responding at harmonics of the rotor speed Q. The
response at integer "engine" orders is quite significaﬁt, with a
large PSD spike at 2Q = 244 Hz and smaller spikes at: 19 = 122
Hz, 3@ =~ 366 Hz, and 4Q =~ 483 Hz. The origin of this excitation
is somewhat uncertain. It is certainly due to some interaction of
the rotating and nonrotating frames since it clearly occurs at
multiples of the rotor speed. It could be due to bearing noise or
a complex interaction of the rotor imbalance with the nonuniform
nonrotating centerbody support structure.

The overall conclusion is that the forward whirl
excitation is indeed sensed by the rotor, but due to
nonuniformity of the support and the presence of additional
exci;ation sources, the signal-to-noise ratio of the desired
response of the blade compared to the total response is not good
(clearly less than one in this case). Therefore in the data
reduction process, great care must be taken to identify the
response associated with each excitation source. Then only the
response associated to the desired whirl direction should be

considered in the determination of the system resonances.
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5.2.2) Backward Whirl Excitation Case

In a procedure parallel to that of the previous
subsection, the results of a backward whirl excitation will be
traced from the shakers, through the bearing housing centerbody,
and ultimately to the blade response. The particular case of a
rotor speed @ = 60 Hz (3600 rpm) run will be discussed to
illustrate the backward whirl response. The shaker input signals
are instantaneously commanding a backward whirl excitation at
wpN = 290 Hz. The time history of the force transducer signals
as logged by the A/D system are shown in fig. 5.7a. The shakers
are phased such that the force exerted by shaker #2 leads that of
shaker #1 by 90°. This corresponds to a phase angle ¢ = 90° as
defined in eq. (3.3.1) and a backward rotating force vector as
viewed in both the nonrotating and rotor frames. The spectral
content of the shaker force transducer signals are shown in fig.
5.8. A pair of sharp peaks are seen at the forcing frequency of
wpN = 290 Hz. The two peaks are of nominally equal amplitude,
indicating again that a pure uniform force vector is produced by
the excitation system.

The acceleration response of the bearing housing
centerbody to the applied shaker forcing is shown in fig. 5.7b.
The signal from accelerometer #2 is seen to nominally lead that
from accelerometer #1 by 90°. Upon inspection of the excitation
system layout shown in fig. 3.4b, the vector sum of the two
acceleration vectors (and hence displacement vectors), is seen to
rotate in a direction opposite to that of the rotor. The two
acceleration signals are of similar amplitude, thus the bearing
housing centerbody executes a nominally circular backward
whirling motion. The power spectral density of the accelerometer
signals is shown in fig. 5.9, where again a relatively clean
response at wpy = 290 Hz is seen. Note that the slight
difference in excitation force amplitude between shaker #1 and #2

is reflected by a consistent slight difference in centerbody
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response amplitude (fig. 5.9), in both cases the 2 direction
responding with slightly less amplitude than in the 1 direction.
This is an indication that at this frequency, the centerbody
support structure is approximately symmetric.

The frequency and sense of the excitation must again be
transformed to the rotor frame. In this case the force vector
applied by the shaker system rotates at an angular rate of upy
= 290 Hz opposite to the direction of rotor rotation, viewed in
the nonrotating frame. Following the discussion of section 3.3,
for a rotor speed @ = 60 Hz, the rotor should sense an applied
force vector rotating opposite to the direction of rotor rotation
at an angular rate of upy*? = 350 Hz, as viewed in the rotor
frame. This corresponds to a point along curve 1 of fig. 3.5, the
force transformation summary plot.

The simultaneous time response of the blade displacement
transducers can be seen in fig. 5.10. The blades are shown in
their correct relative angular position on the rotor hub with the
signal from blade transducer #1 repeated after that of blade
transducer #23. The blades are executing a one nodal diameter
motion with a nominal interblade phase angle of 8 =~ -15,79,
corresponding to a backward whirl motion. A typical blade
displacement signal PSD, specifically for blade #12, is shown in
fig. 5.11. The PSD clearly shows that the blades are responding
at a frequency of upgr = 350 Hz, which corresponds to backward
whirl excitation. Comparison of fig. 5.11 and fig. 5.5 indicates
that the backward whirl motion was excited in a more pure manner
than was the forward whirl motion.

Further inspection of fig. 5.11 reveals the presence of
peaks in the PSD of the blade response at frequencies other than
the excitation frequency wpp- These peaks are of relatively low
amplitude compared to the response forced at ypg. One low
amplitude PSD spike is seen at the rotor speed: 19 = 60 Hz, which

is excited by the mechanisms discussed in section 5.2.1. Two




62

other peaks are also seen, one at 386 Hz and another with a
higher amplitude at 406 Hz. It will be seen in section 5.3 that
these two response frequencies correspond to the ¢ = 60 Hz one
nodal diameter blade forward and backward whirl natural
frequencies, respectively. The response observed at these system
natural frequencies are probably due to broadband background
noise excitation. The response of the backward whirl mode at 406
Hz is of the greater amplitude and its effect can be seen as a
beating signature on the time response of the blades. By
contracting the time scale on a single trace of fig. 5.10, this
beating can be seen. This is shown in fig. 5.12, where the
response of blade displacement transducer #12 is shown with a the
time axis contracted by a factor of four in comparison to the
axis in fig. 5.10. The beating is due to the proximity of the
forcing frequency wpg = 350 Hz to the natural frequency of the
one nodal diameter backward whirl mode (UBB) of 406 Hz for a
rotor speed of 60 Hz. The envelope of the beating signal has a

frequency of:

- “BB " “FR 28 pz

“beat >
which agrees well with the graphically measured beat frequency of
29 Hz.

Therefore it can be seen that the signal-to-noise ratio of
the backward whirl blade response compared to blade response at
other frequencies is on the order of ten, much greater than that
obtained for the forward excitation case. Therefore the
excitation system is seen to be very effective at selectively
exciting backward whirl response and somewhat less effective for

forward whirl.
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5.3) Whirl Spectral Data

In order to determine the natural frequencies of whirl for
the rotor at speed, the signals recorded on the HP 3960 recorder
were analyzed in the frequency domain. Two of the four recorder
channels were the force transducer signals representing the
controlled excitation applied to the system. The two other
channnels were two of the blade piezoelectric displacement
transducers which represented the response of the system to the
shaker input. These tape recorded signals were the most useful of
the data because they were continuous records of the input to and
the response of the rotor system. In contrast, the A/D data
provided only a "snapshot" of the rotor state at one instant-
aneous forcing frequency. By transforming the tape recorded data
into the frequency domain, the system transfer functions could be
inferred as a function of rotor speed and whirl direction. These
peaks in the blade response transfer functions were used to

define the natural frequencies of the rotor.

5.3.1) Spectral Data Reduction Scheme

The transformation of the data to the frequency domain was
achieved by playing back the tape recorded data into the HP 3582A
spectrum analyzer. The spectrum analyzer performs fast Fourier
transforms (FFT) upon its input and provides graphical display of
the FFT magnitude record on its video display. The FFT record
could also be read from the spectrum analyzer over an IEEE-488
bus into an IBM Personal Computer for storage and subsequent
plotting. Since the spectrum analyzer had only two channels,
only one force transducer and blade displacement transducer
signal were transformed into the frequency domain.

This procedure allowed for an input-output transfer
function to be constructed by plotting the relevant peak in the
FFT of the blade displacement response as a function of the

forcing frequency. For a particular blade response FFT, the
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corresponding excitation frequency was determined from a
simultaneous FFT of the force transducer signal. As discussed in
section 3.3 and summarized in fig. 3.5, there is a frequency
shift in the excitation sensed by the rotating assembly compared
to the forcing frequency exerted on the nonrotating bearing
housing. Therefore the system excitation, which is measured in
the nonrotating frame of reference by the force transducers, must
be shifted in the frequency domain in order to determine the
spectral content of the forcing input to the rotating system.

The frequency domain data reduction scheme is summarized
in fig. 5.13. For a particular test case the rotor speed q and
the whirl excitation phase angle ¢ are held constant. The forcing
frequency is swept at a relatively low rate in comparison to the
frequencies being excited. Therefore during a data sampling
window for the spectrum analyzer, the forcing frequency upy Was
essentially constant. This is illustrated in fig. 5.13a where the
time record of the shaker output is shown. A simultaneous sample
of the blade response signal over the same sample window is shown
in fig. 5.13b. The force transducer signal of fig. 5.13a is
transformed by the spectrum analyzer into the FFT plot of fig.
5.13c. The forcing FFT plots are typically characterized by a
single clean peak at the shaker forcing frequency of wpy and,
since the amplitude of the forcing is maintained constant during
a sweep, the amplitude of the FFT peak is constant over the
sequential sample windows. The corresponding blade response FFT
is shown in fig. 5.13d. In the example shown, the case of forward
whirl excitation is depicted, therefore the desired response is
expected at upgp = wpy-t- Again the frequency components of
the blade signals are referred to the rotor frame and the
frequency components of the force transducer signals are with
respect to the nonrotating or inertial frame. As discussed in
section 5.3 there are other frequency components in the blade

response, specifically at harmonics of the rotor speed, wpy»
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and the undesired whirl direction (in this case at wpy+Q).

As the window over which the FFT samples are taken is
shifted along the time axis of figures 5.13a and 5.13b, the
forcing frequency increases according to the sweep rate commanded
by the function generators at the time of the test. By
sequentially performing FFT's on the shaker force and blade
response signals, the spectral cascade plots of figures 5.13e and
5.13f are produced. The cascade plot of the shaker forcing input,
fig. 5.13e, shows the sweeping forcing frequency WFN @S a clean
frequency component peak that translates along the frequency axis
according to the sweep rate. The desired blade response frequency
component, in this example the forward whirl component at ypgp =
wpN~Q, also translates along the frequency axis of the cascade
plot of fig. 5.13f. The amplitude of the blade frequency
component corresponding to the target response of forward whirl
is then plotted as a function of excitation frequency upg:
referred to the rotor frame. Since the amplitude of the
excitation was constant over a sweep, a blade response transfer
function such as fig. 5.13g can be constucted by plotting the
amplitude of the Fourier component at wpp versus the excitation
frequency wpg. The peaks in the transfer function are assumed
to correspond to natural frequencies of the rotor system, at the
given set of rotor speed and whirl phasing conditions.

Because each test is performed at a constant shaker phase
angle ¢, then only three of the six system modes should be
excited by the forcing sweep. The modes that are excited are
those with mode shapes of whose direction correspond to that of
the whirl excitation. Also, because each test is performed at a
constant rotor speed, the transfer function plot occurs along a
constant speed (vertical) line in a system response plot such as
fig. 4.3. This is shown for the forward whirl case in fig. 5.13h,
where the transfer function is overplotted as a vertical trace on

the system natural frequency plot. The peaks of the transfer
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function plot define the system natural frequencies for those
particular test conditions. By varying the rotor speed and
performing tests with the shakers phased for both forward and
backward whirl, the experimental system natural frequency (in the
rotor frame) plot can be constructed. This data reduction scheme
will be applied to the forward whirl excitation data, then to the
backward whirl excitation data in the next two subsections. The
results of the data analysis will be overplotted on a system

natural frequency plot and tabulated in Appendix A.

5.3.2) Forward Whirl Spectral Data

The spectral response data from the forward excitation
tests will be examined by analyzing the HP 3960 tape recorder
data according to the procedure outlined in the previous
subsection. The data will be presented in the form of cascade
plots of the blade response power spectral density as in fig
5.14. Each trace on the cascade plot corresponds to a single
excitation frequency wpgr, which is referred to the rotor frame.
All of the traces on a given cascade plot are for the same rotor
speed and whirl phasing. The range of experimentally applied
excitation frequencies for some of the forward whirl data are
graphically shown as vertical bars on the predicted system
frequency plot shown in fig. 5.27.

The cascade plot of fig. 5.14 depicts the blade spectral
response for the case of a rotor speed of Q@ = 30 Hz, forward
whirl shaker phasing, and an excitation frequency range of
wpr = 365 to 397 Hz. This range of excitation is in the
neighbourhocod of the blade one nodal diameter forward whirl mode
at this speed and is graphically shown on the system frequency
plot of fig. 5.27. The traces of the cascade plot of fig. 5.14
show that the blade response contains a dominant frequency
component at the desired response, upg, and a smaller response

at upy- The response peak at wpr 1s a maximum for the
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excitation frequency trace of wpg = 379 Hz and the signal-to-
noise ratio of the desired response frequency component is about
four for that trace. Upon inspection of the data at smaller
intervals of excitation frequency, a more precise location

of the blade one nodal forward whirl mode at § = 30 Hz is found
to be at 378 Hz. This provides one data point for the system
natural frequency plot of fig. 5.37.

The cascade plot of fig. 5.14 is summarized in the systenm
transfer function plot of fig. 5.15. The plot depicts blade
response amplitude as a function of forcing frequency uwpg for a
constant forcing amplitude, rotor speed, and whirl phaéing
direction. Only the two higher forward whirl modes are shown,
since the disk rigid body translation mode appears below the
frequency range of fig. 5.15. The resonant peak for forward whirl
blade one nodal diameter motion at 378 Hz is very sharp
indicating that the observability of the blade modes is
relatively much greater than that of the disk rigid body modes.
In fact the blade response to the disk forward whirl rigid body
pitching modes has such a low signal-to-noise ratio that it was
very difficult to determine the experimental natural frequencies
of this mode. Therefore this mode does not appear in the
experimental data overplot on the system natural frequency plot
of fig. 5.37. As will be seen in this section, the disk forward
whirl rigid body translation modes were discernable only after
careful inspection of the data because of the poor signal-to
noise ratio of the blade response at that frequency range.

The difference in amplitude within the transfer function
plots such as fig. 5.15 is primarily because the sensors used to
monitor the system response were piezoelectric displacement
transducers The transducers are specifically sensitive to blade
motion, hence blade displacement modes are more observable than
the disk rigid body translation and pitching modes. This

difference in the observability of the blade displacement and
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disk rigid body motion will be apparent in all the rotating data,
and it will affect the ability to detect the disk rigid body
modes with a high degree of certainty.

The cascade plot of blade response for the case of:
forward whirl excitation, rotor speed 9 = 60 Hz (3600 rpm), and
excitation frequency range of wpg = 130 Hz to 172 Hz is shown
in fig. 5.16. The rotor operating point and excitation range
corresponding to this cascade plot are sketched on the system
frequency plot of fig. 5.27. This cascade plot contains many
frequency components other than the target forced response at
WFR = wpn—%- The spectra show response peaks at the’
frequencies wpy and at wpy*Q, the frequency at which a
backward excitation would appear. These undesired response peaks
are often of larger amplitude than the desired forward whirl
response, indicating that a poor signal-to-noise ratio was
achieved. Harmonics of the rotor speed Q@ also appear, with the
fourth harmonic response approaching 30% of the amplitude of the
forward whirl forced response. In spite of the difficulty in
attaining a pure forward response pattern, a peak in the forward
whirl cascade plot is seen on the trace corresponding to the
excitation frequency uypg = 150 Hz. Further analysis of the
tape recorder data indicate that the exact position of the peak
response occurs between the spectrum traces of wpgr = 144 Hz and
150 Hz, specifically at wpg = 146 Hz. Therefore this is the
natural frequency of the disk rigid body translation mode at a
rotor speed of Q9 = 60 Hz.

The cascade plot corresponding to the same operating
conditions (forward whirl and @ = 60 Hz) as fig. 5.16, but at the
higher excitation frequency range of wpgr = 374 Hz to 402 Hz is
shown in fig. 5.17. This excitation frequency range is in the
neighbourhood of the blade one nodal diameter forward whirl mode.
The response of the blade is seen to be much cleaner than in fig.

5.16, with the peaks corresponding to wpgp being the only
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significant ones and the response amplitudes are of much higher
amplitude as can be seen in the transfer function plot of fig.
5,.18. In the cascade plot of fig. 5.17, the resonance peak can be
seen on the ypg = 386 Hz trace. This corresponds exactly with

the peak on the transfer function plot which was determined at
much finer intervals of excitation frequency. Therefore the blade
one nodal diameter forward whirl mode is seen to occur at a
frequency of 386 Hz, in the rotor frame of reference. Again,
this higher response amplitude of the blade one nodal diameter
modes is due to their higher observability than the disk rigid
body dominated modes.

Another example of a cascade plot in the neighbourhood of
the disk rigid body translation dominated mode is shown in fig.
5.19. This plot corresponds to the case of forward whirl
excitation of the rotor at a speed near Q@ = 90 Hz, specifically
91.3 Hz. The spectral content of this cascade plot is similar to
that seen in fig. 5.16, the previous forward whirl cascade plot
in the vicinity of a disk rigid body dominated mode. The
response at the target forward whirl frequency is seen to occur
at a slightly lower amplitude than the responses at ypy and
wpN+tQ. There is also an appreciable amplitude of response at
harmonics of the rotor speed. Therefore a poor signal-to-noise
ratio was achieved in driving the target response frequency. The
forward response does peak in the vicinity of the 112 Hz trace,
specifically at wpgr = 114 Hz. therefore the disk forward whirl
rigid body disk transaltion mode at a rotor speed Q9 = 91.3 Hz is
determined to be 114 Hz in the rotor frame of reference. The
blade response transfer function plot for this case of a rotor
speed @ = 90 Hz (91.3 Hz) and forward whirl phasing is shown in
fig. 5.20.

Forward whirl response cascade plots for the rotor speed
of @ = 120 Hz and the excitation ranges of wpgr = 73 Hz to 99 Hz
and ypg = 444 Hz to 468 Hz are shown in fiqures 5.21 and 5.22
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respectively. Figure 5.21 depicts the blade spectral response in
the neighbourhood of the disk rigid body translation dominated
mode. As is typical of the lower disk modes, the response at the
undesired response frequency wpy 15 of larger amplitude

relative to the target response frequency upr = wpNy-R. Also,
harmonics of the rotor speed 7 appear in the spectral content of
the blade response. These undesired response frequencies combine
to result in a poor signal-to-noise ratio. The peak in the
response at ypp is seen in the vicinity of the 85 Hz trace.
Further inspection at smaller excitation frequency increments
yields a resonant frequency for the forward whirl disk rigid body
translation dominated mode of 84 Hz, as seen in the transfer
function plot of fig. 5.23. Figure 5.22 depicts the response in
the vicinity of the blade one nodal diameter forward whirl mode.
In addition to the response at wpp, @ significant response at
the third and fourth harmonics of the rotor speed are seen. The
spectra indicate a resonance in the neighbourhood of wpgp =
456Hz, and upon closer inspection the one nodal diameter forward
whirl blade mode is seen at 454 Hz as shown in the transfer
function of fig. 5.24. This resonance is also seen to be excited
by broadband background excitation during the experiment as can
be seen on the wpg = 476 Hz trace of fig. 5.22.

The disk rigid body translation dominated mode cascade
plot for the forward whirl, Q@ = 150 Hz case is shown in fig.
5.25. It can be seen from the plot that the signal-to-noise ratio
of the desired response is decreased by the presence of frequency
components at ppy and at 19. The peak response at the forward
frequency is seen near uygg = 62 Hz. The transfer function
corresponds to this range of excitation frequency is seen in fig.
5.26, where the more precise location of the forward whirl disk
rigid body translation mode is seen at 60 Hz.

The operating points for the spectral response data to

the forcing sweeps are all depicted graphically in fig. 5.27.
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The correlation of the experimentally determined natural
frequencies to those predicted by the model developed in

Chapter 2 will be discussed in Section 5.4.

5.3.3) Backward Whirl Spectral Data

The cascade plot spectral data and blade response
transfer function results of some of the backward whirl tests
will be be presente
excitation range that corresponds to each cascade plot will be
overplotted on a system natural frequency plot in fig. 5.36.

The cascade plot for the case of: backward whirl
excitation, a rotor speed @ = 5 Hz, and an excitation in the
range of the disk rigid body pitching mode is shown in fig. 5.28.
The spectral content of each of the traces is essentially a pure
backward whirl response at wpr = wpn*f. The resonant peak is
seen to occur in the vicinity of the wpg = 332 Hz trace.

Further analysis of the tape recorded data at smal;er excitation
frequency increments show a peak response at wpg = 331 Hz. The
cascade plot for the excitation range in the vicinity of the
blade one nodal diameter backward whirl mode is seen in fig.
5.29. Again, a relatively pure blade spectral response is seen
with the one nodal diameter blade mode resonant peak occuring in
the vicinity of 389 Hz.

The cascade plots for the @ = 60 Hz backward whirl disk
rigid body translation and one nodal diameter blade modes are
shown in figures 5.30 and 5.31, respectively. The spectra contain
evidence of undesired response at wpy—Q and wupy, but the
target backward whirl response at upgr = wpytR occurs at a
much improved signal-to-noise ratio compared to the desired
response obtained for the forward whirl excitation case. The
cascade plot in fig. 5.30 indicates that the rescnant frequency
for the disk rigid body translation mode occurs in the vicinity

of wpr = 279 Hz. Upon a more detailed inspection of the tape
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data, an identical natural frequency is obtained. Figure 5.31
indicates that the blade one nodal diameter natural frequency
appears in vicinity of wpg = 405 Hz, which is very close to

the frequency of 406 Hz obtained upon a more detailed inspection
of the data. The blade response transfer function for the g =

60 Hz backward whirl case is shown in fig. 5.32.

The cascade plots for the highest rotor speed tested,

@ = 150 Hz are shown in figures 5.33 and 5.34. Both plots show
relatively pure backward whirl forced response with negligible
amplitudes of response at wpy- In the range of the frequency
scales used in the figures, the forward whirl frequency WFN~R
response noise does not appear, but it is also of negligible
amplitude. However in both figures there is evidence of a small
amplitude response at harmonics of the rotor speed Q. Figure
5.33, which corresponds to the excitation range for the disk
rigid body translation dominated mode, indicates that the
resonant frequency occurs in the vicinity of 365 Hz. A more
detailed inspection of the tape recorded data indicates that the
more precise location of the mode is at 364 Hz. The excitation
range spanned by the response traces in fig. 5.34 includes the
blade one nodal diameter mode, whose natural frequency is seen to
occur near 461 Hz. A more detailed data reduction indicates that
the mode actually occurs at 462 Hz. The blade response transfer
function for the Q@ = 150 Hz case is shown in fig. 5.35.

The blade response has been examined in the frequency
domain for both forward and backward whirl excitation. In general
it was evident that it was possible to excite a more pure
backward whirl response compared to that obtained for forward
whirl. The regions of excitation discussed in section 5.3 where
outlined on the system frequency plots of figures 5.27 and 5.36.
From these data and the other tests whose data were not detaied
specifically, the experimentally determined system frequency plot

of fig. 5.37 is obtained. The experimental natural frequencies




are overplotted on those predicted by the 6 DOF model described
in Chapter 2. The correlation between the experimental and

predicted results will be examined in the next section.

5.4) Correlation of Experimental Results with the Model
Predictions

In this section the correlation between the system
natural frequencies that were experimentally determined and
those predicted by the analytical model of chapter 2 will be
discussed. The agreement between the experimental and the
predicted and experimental results is reasonable and shows the
correct trends in dynamic behaviour, given the uncertainty in
characterizing the system stiffness parameters required as input
for the model.

The system natural frequencies determined by the 6 DOF
model of eqn. (2.1.7) have been used as a prediction of the
dynamic behaviour of the shaft-~bladed disk system. The most
refined stiffness fit, that is the fit that correlated best with
the nonrotating modal data, was used as input to the system
equations of motion (2.1.7). These stiffness data are tabulated
in column (c) of Table A.2. The inertial properties of the rotor,
which are listed in Appendix A, were also used. The resultant
rotor dynamic behavior is shown in fig. 5.37., The comparison
between the Q = 0 natural frequencies predicted by the model with
the improved stiffness fit of fig. 5.37 and the experimentally

measured frequencies are shown in Table 5.4.1.
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Table 5.4.1 Comparison of Q@ = 0 Predicted and

Experimental Natural Frequencies

Mode Predicted Measured
Low Disk Translation Dominated 222.5 Hz 222 Hz
High Disk Pitch Dominated 311.3 Hz 325 Hz
Blade One Nodal Diameter 394.5 Hz 388 Hz

It can be seen that the high disk pitch mode is predicted to
occur at a frequency lower than that measured. It can also be
seen that the @ = 0 blade one nodal diameter mode is predicted at
a higher frequency than that measured. The disk translation mode
is predicted accurately by the model however.

The correlation between the predicted and measured dynamic
whirling behaviour of the MIT Aeroelastic rotor at speeds up to
Q = 150 Hz (9000 rpm) can be seen from fig. 5.37. The measured
blade one nodal diameter natural frequencies correlate well with
the predicted modes at low speeds, in spite of the offset between
the two at zero rotor sbeed. At rotor speeds above approximately
90 Hz, the experimental blade modes correlated less well and were
higher than those predicted by the model. This is an indication
that the blade centrifugal stiffening effects were underestimated
in the model. The measure of this blade centrifugal stiffening,
the Southwell coeficient ¢ which is listed in Appendix A as 1.93,
is probably too low. Another feature of the blade modes that is
apparent in fig. 5.37 is the slight split in the blade forward
and backward whirl natural frequencies. This would not be
predicted in a conventional rigid shaft model.

The difficulty in obtaining a good signal-to-noise
ratio for the forward whirl disk rigid body response led to
difficulties in determining the forward whirl disk rigid body
pitch modes above a rotor speed of 30 Hz. Therefore only the
Q@ = 0, 5, 30 Hz forward whirl disk rigid body pitch modes are
indicated on fig. 5.37. The backward whirl disk rigid body
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pitching modes were excited with a much greater signal-to-noise
ratio. The correlation between the experimental natural
frequencies for the backward whirl disk rigid body pitch modes
with the predicted frequencies indicates that the measured modes
occur at higher frequencies than those predicted by the model.
This is partially due to the Q = 0 predictions being lower than
the measured frequency, as seen in Table 5.4.1. However the
degree of centrifugal stiffening of the pitch mode seems to also
be underestimated by the model. The experimental data also
indicates that the degree of interaction between the backward
whirl disk rigid body pitching motion and the blade forward whirl
one nodal diameter motion is underestimated by the model. No
such interaction, of course, would be predicted by a
conventional rigid shaft model.

The agreement between the experiment and the model for the
disk rigid body translation mode is very good for low speeds.
However at higher rotor speeds, the split of the disk translation
modes is underestimated by the model. This is because the g = 0
disk pitch and translation modes are more closely spaced in the
model prediction than in the experimental case. Therefore the
interaction between the disk translation and pitch modes is
overestimated in the predictions of the model. The result of this
is to predict the backward whirl mode at too low a frequency and
the forward mode at too high a fregquency. The experimental
forward whirl disk translation data indicates that the model
predicts a critical speed (the intersection of the forward whirl
curve with the Q axis) that is too high, specifically around
235 Hz. Extrapolation of the experimental data indicates an
actual critical speed of approximately 215 Hz.

Therefore the results of the experimental forced whirl
testing correlate reasonably well with the model given the
uncertainty of the input parameters to the prediction. The

physical coupling phenomena predicted in the model are clearly



6. Conclusions

A series of rotating whirl tests have been performed in
the vacuum of the MIT Blowdown Compressor Facility on the MIT
Aeroelastic Rotor, which is structurally typical of modern high
bypass ratio cantileverd turbofan stages. The test section of
the Facility was modified to install an elecctromagnetic shaker
whirl excitation system. This arrangement allowed for dynamic
testing of the rotor at at arbitrary rotor speed, direction of
whirl excitation, and excitation frequency. Using the 23 blade
piezoelectric displacement transducers as the primary response
monitoring instrumentation, the rotor was excited at speed with
an excitation pattern of constant whirl direction and slowly
sweeping frequency. The frequencies at which the driven response
attained a maximum amplitude were found as the rotor natural
frequencies.

In order to predict the natural frequencies of the MIT AE
Rotor as installed in the Facility, the analytical model of
Mokadam (5] was modified to include the effects of the system
center of mass not coinciding with the disk centroid for a
massive shaft. The structural properties of the rotor were then
required in order to use the model to predict the system dynamic
behavor. The inertial properties of the system were calculated
by careful measurements and the use of holographic blade mode
shape determination. Attempts to measure the shaft and support
structure stiffnesses by static loading and displacement
measurement were unsuccessful. The results of the static tests
showed large scatter and nonlinearity, probably due to the use of
angular contact ball bearings in the rotating assembly.
Therefore the shaft and support structure stiffnesses were
determined by a series of nonrotating dynamic testing of the low
shaft-disk dominated modes. The resulting dynamic data and

inertial parameters were fit to a simple 2 DOF model of a rigid
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bladeless disk in order to calculate the effective stiffnesses of
the system. The resulting stiffnesses were then further fit to
the full 6 DOF whirl analytical model in order to obtain the best
possible fit to the nonrotating dynamic measurements.

With the benefit the predicted natural frequency
information, the rotating whirl tests were carried out. Slow
sweeps of excitation frequency were performed at constant rotor
speed and whirl direction and the resulting blade displacement
data were analyzed in the frequency domain and the following
results were observed:

1. The whirl excitation system was successful in forcing the
target whirl response directions. However, the backward
whirl motion was excited at a much greater signal-to-noise
ratio than the forward whirl motion. The response of the
system also included response at harmonics of the rotor
speed @, at the inertial forcing frequency upy, and at
untargeted whirl direction.

2. The dynamic behavor of the rotor followed the general
predictions of the analytical model. In the rotor frame of
reference the disk rigid body translation dominated mode
shows the split into forward and backward whirl legs, the
forward whirl curve apporoaching a zero frequency static
divergence at the rotor critical speed. The rigid body
pitch dominated modes also showed some splitting with
increasing rotor speed due to the small component of
translation in their eigenvectors. The blade one nodal
diameter modes exhibited centrifugal stiffening but with
a slightly stronger dependence on rotor speed than
predicted. this indicates that the Southwell coefficient
may have been underestimated.

3. The degree of interaction observed between the 51aded
disk modes was seen to be stronger in the experimental

results than predicted by the model. This is probably due
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to the uncertainty associated with the determination of

the shaft and support structure stiffness properties.

The nonrotating modal surveys performed in order to
determine the stiffness properties revealed that the nonrotating
support structure for the rotor did exhibit stiffness asymmtries.
The rotating assembly was found to be symmetric in its dynamic
behavior, as would be expected of a precision axisymmetric
structure. The asymmetry in the nonrotating assembly could be in
part responsible for the rotor whirl response at the inertial
forcing frequency wpy and at the undesired whirl direction
frequency.

Finally the nondimensionalization of the equations of
motion yielded the relevant parameters for evaluating the
propensity for, and magnitude of interactions between the
bladed-disk and the shaft-disk dynamics. Consideration of a
rotor with only translation or pitch disk degrees of freedom
yields the result that.the effect of the Southwell coefficient
being greater than one (as it is in gas turbine blading) is to
decrease the propensity for interaction of the shaft-disk modes

with the bladed-disk modes with increasing rotor speed.
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Appendix A: Structural Properties of the MIT Aeroelastic Rotor

i) Dimensional Parameters

The inertial properties of the entire shaft-disk-blading
assembly with respect to a coordinate system shown in fig. 2.1
and a system center of mass offset from the disk centroid as
shown in fig. 2.2b are:
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axial mass imbalance

~-0.741 kgem

Ip total rotor moment of inertia for

pitching about a disk diameter 0.297 kgem?

The holographically measured blade first bending mode
shape [5] along the blade midchord line y(r), was determined
as a fourth order polynomial fit:

L)

2 3
y(r) = ¢, + c,r + c,r + ¢r + cr

0 L]

A careful process of laying out a grid on the blade surface and
measuring the vloume of each resulting grid cell vielded a
fourth order fit to the blade spanwise mass distribution along

the midcherd line:

=4, + d,r+ d,c’ +d,r +4,r [ 2=

The cocfficients ¢y and di o0f the fits are tabulated in

Table A.1.
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Table A.1 Polynomial Fit Coefficients’
Mode Shape Coefficients Mass Distribution Coefficient
co ~6.8104 * 1071 do 4.1730 * 10 g/cm
c1 1.0519 * 10"t cm™? d1 ~3.1294 g/cm?
c2 -5.5161 * 1073 cm™? dz 1.1123 * 107! g/cm?
c3 . 9.4717 * 1075 cm™? ds ~2.0470 * 1073 g/cm*
o 1.3225 * 1076 cm™4 dy 1.1887 * 1073 g/cmS

+ for r in [cm].

From their integral definitions given in Chapter 2 and the

fits shown above, the blade inertial properties are calculated:

mo = blade modal mass 1.43 * 1073 kg*m?

mi = blade consistent mass

coupling disk pitch 2.41 * 107! kge'm?

m2 = blade consistent mass

coupling disk translation 1.01 ® 1072 kg*m

3.70 * 1079 kgem?

my = blade mass foreshortening

The stiffness parameters of the system were fit with
various degrees of sophistication. These fits are tabulated in
Table A.2. Column (a) of the table corresponds to the shaft and
support structure stiffness fit to the simple 2 DOF model of
eq. (4.3.1) using the uncompensated nonrotating modal data. The
resulting behavior of the system natural frequencies at speed
for this "baseline" fit areshown in the rotor frame in fig. 4.3a
and in the nonrotating frame in fig. 4.3b.

The stiffness data in column (b) of Table A.2 corresponds
to an improved fit using some information resulting from the

Q@ = 0 frequency predictions of the 6 DOF model. The shifting in the




predicted disk frequencies that occurs when the blade effects are
included with the full model is precompensated for by using the
frequencies of 222 Hz and 335 Hz as input to the 2 DOF model
instead of the experimentally observed values of 222 Hz and

325 Hz. The resulting translation / pitch stiffness coupling term
calculated by the 2 DOF fit is decreased by 35% and the 2 DOF
characteristic equation is again solved to find the corresponding
transaltion and pitch stiffnesses. the blade stiffness remains
uncompensated in this fit. The resulting system natural
frequencies predicted by the model using this fit is shown in

the rotor frame in fig. 4.4a and in the nonrotating frame in

fig. 4.4b.

A further improvement in the fit between the
experimentally measured frequencies and those predicted by the
nmodel is presented in column (c) of Table A.2. This fit was
obtained by: precompensating the measured nonrotating natural
frequencies as in the column (b) case, decreasing the resulting
stiffness coupling by 30%, calculating the corresponding
translation and pitch stiffnesses, and decreasing the blade
modal stiffness by 19%. The resulting dynamic behavior of the
system is shown in the rotor frame in fig. 4.5a and in the

nonrotating frame in fig. 4.5b.
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Table A.2 Stiffness Fits for the MIT AE Rotor

Stiffness Parameter a b c
Kyp+ KyR [107 N/m] 8.10 5.47 5.68
KER’ KnR [108 Nem/rad) 1.05 1.32 1.40
Kan’ —KYER [10¢ N/rad] 5.29 3.44 3.70
Kp [10° Nem] 7.90 7.90 6.43

ii) Nondimensional Parameters
The nondimensional inertial parameters for the MIT AE

Rotor as defined in section 2.2 are:

M = 0.073 0.021

TP Hrp

p = 0.0048 0.054

Hpp

The centrifugal stiffening of the blade, or Southwell
coefficient is:

L = 1.93

The nondimensional stiffness parameters for the three stiffness

fit cases are listed in Table A.3:

Table A.3 Nondimensional Stiffness Parameters

Stiffness Parameter a b c
wy/ Vg uy/uB 0.759 0.624 0.636

|
wg/upy w,/up 0.798 0.897 0.924 }
k 0.331 0.164 0.172 |




Apperdix B: Experimental Natural Frequencies

Table B.1 lists the natural frequencies of the disk
translation dominated mode, disk pitch dominated mode, and the
blade one nodal diameter (1ND) mode for both forward and
backward whirl as a function of rotor speed.

Table B.1 Experimental Natural Freguencies

Rotor Speed Translation Pitch Mode Blade 1IND

[Hz] Mode [Hz] [Hz] [Hz]
FwW BW FwW BW FW BW

0 222 325 388
5 217 228 320 331 390 389
30 188 253 295 349 378 393
60 146 279 - 373 386 406
91.3 114 313 - 384 399 424
120 84 339 - 410 442 445
150 60 364 - 424 450 462

FW = forward whirl mode, BW = backward whirl mode

85
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Fig. 2.1 Coordinate system for the whirl equations of motion
for an N bladed shroudless fan cantilevered on a
flexibe shaft.



*X

/
F:://’
//
MASSLESS SHAFT [
z **‘ﬂ* = N

/7777

~—
S

Fig. 2.2a System center of mass location for eq. (2.1.5)

1 —ff—

Fig. 2.2b System center of mass location for eq. (2.1.7)
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UNCOUPLED MODE FREQUENCY IN ROTOR FRAME

ROTOR SPEED wg

Fig. 2.3 Dynamic behavior of the uncoupled disk translation
mode (w1), disk pitch mode (w;), and blade mode

as a function of rotor speed.
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Fig. 3.3 Blade root attachment detail showing piezoelectric
displacement transducer.




92

‘wa31SLS UOTIRITOXD TIATUYM 8y YITM
uoT3109S 3§93 @Yyl UT POTTEISUT I03I0W IV LIW 3yl 3JO mafa juoxrg

c# HIMVHS

40104

ey’

€

‘614

L+ HINVHS




93

"paAowWsI I1030X 3Y} Y3ITA
wa1s4AS UOTIPITOXD TITUM 9Yl JO WEIIISUMOP BUTHOOT M3TA dq¥ ¢ °"Bra

SH3IONASNVYYHL 30HOd

SIV3S DNIH-O JINVNAG—
aod IWD&.
aNvg A1139g -
LANMDOOT

AdO8YIINID :
ONISNOH ONIHYIE —

~

LiVHS —~

o e+

SH3IL3IWOHITIOOVY AQO8YILINID




94

Weg
. 4
=
<
o
™
x
®) v
5 o/ —— p- 0
o QO — e @ = —90"
z A P
5 "
2 X
5 ®
C
i
W “ey /S
< v
= @i\ o A@Q
2 T \2 /d§
w <)4$>\ 4//<g?
47,9\ / ©
0] < \\(/ —p— ()
WeN

ROTOR SPEED

Fyp = F osin g, t

Fy, = Fsin[wyt+9o]

Fig. 3.5 Summary plot of the whirl excitation transformation
from the inertial to the rotor frame.



95

a)
222 Hz Mode
Predominately
b) Translation
325 Hz Mode
Predominately
Pitch
c)

Fig. 4.1 Nonrotating shaft-disk modes of the of the MIT AE Rotor.
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Fig. 5.31 Blade displacement spectral cascade plot for:
@ = 60 Hz, backward whirl excitation of the blade

IND mode, excitation frequency range wpg =
399 to 421 Hz.
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Fig. 5.32 Blade response transfer function for: @ = 60 Hz,
backward whirl excitation.
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Blade displacement spectral cascade plot for:

Q = 150 Hz, backward whirl excitation of the disk
pitch mode, excitation frequency range upp =

355 to 376 Hz.
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Fig. 5.34 Blade displacement spectral cascade plot for:
Q = 150 Hz, backward whirl excitation of the blade
IND mode, excitation frequency range wpp =
451 to 473 Hz. '
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Fig. 5.35 Blade response transfer function for: Q@ = 150 Hz,
backward whirl excitation.
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Fig. 5.36 Backward whirl excitation sweep ranges overplotted
on the predicted system natural frequency plot.
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